留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双激励超音速气体雾化喷嘴共振特性的数值研究

祖洪彪 周哲玮 王志亮

祖洪彪, 周哲玮, 王志亮. 双激励超音速气体雾化喷嘴共振特性的数值研究[J]. 应用数学和力学, 2012, 33(12): 1379-1391. doi: 10.3879/j.issn.1000-0887.2012.12.001
引用本文: 祖洪彪, 周哲玮, 王志亮. 双激励超音速气体雾化喷嘴共振特性的数值研究[J]. 应用数学和力学, 2012, 33(12): 1379-1391. doi: 10.3879/j.issn.1000-0887.2012.12.001
ZU Hong-biao, ZHOU Zhe-wei, WANG Zhi-liang. Properties of acoustic resonance in double-actuator ultra-sonic gas nozzle: numerical study[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1379-1391. doi: 10.3879/j.issn.1000-0887.2012.12.001
Citation: ZU Hong-biao, ZHOU Zhe-wei, WANG Zhi-liang. Properties of acoustic resonance in double-actuator ultra-sonic gas nozzle: numerical study[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1379-1391. doi: 10.3879/j.issn.1000-0887.2012.12.001

双激励超音速气体雾化喷嘴共振特性的数值研究

doi: 10.3879/j.issn.1000-0887.2012.12.001
基金项目: 国家自然科学基金资助项目(10772107;10702038;11172163);上海市教委科研创新资助项目(08YZ10);上海市科委资助项目(09DZ1141502);上海高校创新团队建设项目
详细信息
    作者简介:

    祖洪彪(1985—),河北人,硕士;王志亮(1974—), 湖北人,博士(联系人. E-mail:wng-zh@shu.edu.cn).

  • 中图分类号: O354.2

Properties of acoustic resonance in double-actuator ultra-sonic gas nozzle: numerical study

Funds: Project supported by the National Natural Science Foundation of China (Nos. 10772107, 10702038, and 11172163), the E-Institutes of Shanghai Municipal Education Commission, and the Shanghai Program for Innovative Research Team in Universities
  • 摘要: 超音速气体雾化(ultra-sonic gas atomization, USGA))喷嘴是实现喷射雾化的重要装置,它能够产生脉动的超音速气流,获得较小的平均粒径和集中的粒径分布.在USGA喷嘴的共振管端部引入了主动的激励信号,组成双激励式超音速气体雾化器,并对超音速气体雾化器内部Hartmann腔体气体流场在无激励/有激励情况下所产生的气体振动特性进行了数值研究.结果表明在主动激励器的作用下,超音速气体雾化器内气流的振动效果如振幅和起振特性等都得到了有效的加强.研究发现超音速气体雾化器存在多个气体受激振动的共振频率,其对应于两类不同的共振模式,“Hartmann模式”和“全局模式”.双激励器信号的频率、激励幅度及相位差改变都能够有效地改变超音速气流的振动特性.研究同时阐明了Hartmann共振管和二次共振管在USGA喷嘴腔体内产生气体脉动时的联动特点.
  • [1] Hartmann J, Trolle B. A new acoustic generator[J]. J Sci Instr, 1927, 4(4): 101-111.
    [2] Raman G, Srinivasan K. The powered resonance tube:from Hartmann’s discovery to current active flow control applications[J]. Progress in Aerospace Sciences, 2009, 45(4/5): 97-123.
    [3] Grant N J. Rapid solidification of metallic particulates[J]. Journal of Metals, 1983, 35: 20-27.
    [4] Ayres J D, Anderson I E. Method for Generating Fine Sprays of Molten Metal for Spray Coating and Powder Making: USA, 4619845[P]. 1986.
    [5] Allimant A, Planche M P, Bailly Y, Dembinski L, Coddet C. Progress in gas atomization of liquid metals by means of a De Laval nozzle[J]. Powder Technology, 2009, 190(1/2): 79-83.
    [6] Zhao W J, Cao F Y, Ning Z L, Zhang G Q, Li Z, Sun J. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer[J]. Computers and Chemical Engineering, 2012, 40: 58-66.
    [7] Mullis A M, McCarthy I N, Cochrane R F. High speed imaging of the flow during closecoupled gas atomization:effect of melt delivery nozzle geometry[J]. Journal of Materials Processing Technology, 2011, 211(9): 1471-1477.
    [8] Rai G, Lavernia E J, Grant N J. Powder size and distribution in ultrasonic gas atomization[J]. Journal of Metals, 1985, 37(8): 22-26.
    [9] 李博, 胡国辉, 周哲玮. Hartmann管及超音速雾化喷嘴流场的数值模拟[J]. 应用数学和力学, 2007, 28(11): 12611271. (LI Bo, HU Guo-hui, ZHOU Zhe-wei. Numerical simulation of flow in Hartmann resonance tube and flow in ultrasonic gas atomizer[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(11): 1415-1426.)  
    [10] Zhou Z W, Tang X D. The effect of the pulsation in gas flow on the stability of melted metal jet[C]//Fourth International Conference on Spray Forming. Baltimore, USA: University of Maryland Press, 1999.
    [11] Veistinen M K, Lavernia E J, Baram J C, Grant N J. Jet behavior in ultrasonic gas atomization[J].The International Journal of Powder Metallurgy, 1989, 25(2): 89-92.
    [12] Mansour A, Chigier N, Shih T, Kozarek R L. The Effects of the Hartman cavity on the performance of the USGA nozzle needed for aluminum spray forming[J]. Atomization and Sprays, 1998, 1: 1-24.
    [13] 王志亮. 十字形气体共振频率发生器: 中国:200810203978.2[P].2008-05-20. (WANG Zhi-liang. Actuator Driven UltraSonic Gas Atomization Nozzle: P.R.China, 200810203978[P]. 2008-05-20.(in Chinese)) 
    [14] ZU Hong-biao, WANG Zhi-liang. Resonant behaviors of an ultra sonic gas atomization nozzle with a zero mass-flux jet actuator[J]. Journal of Shanghai University(English Edition), 2011, 15(3): 166-172.
    [15] Spalart P, Allmaras S. A oneequation turbulence model for aerodynamic flows[R]. American Institute of Aeronautics and Astronautics, Technical Report AIAA92-0439.
    [16] Sreejith G J, Narayanan S, Jothi T J S, Srinivasan K. Studies on conical and cylindrical resonators[J]. Appl Acoust, 2008, 69(12): 1161-1175.
    [17] Brocher E, Maresca A, Bournay M H. Fluid dynamics of the resonance tube[J]. J Fluid Mech, 1970, 43: 369-384.
  • 加载中
计量
  • 文章访问数:  2571
  • HTML全文浏览量:  154
  • PDF下载量:  1336
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-14
  • 修回日期:  2012-09-21
  • 刊出日期:  2012-12-15

目录

    /

    返回文章
    返回