留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Euler方程有限差分方法驻波晃动模拟

罗志强 陈志敏

罗志强, 陈志敏. 基于Euler方程有限差分方法驻波晃动模拟[J]. 应用数学和力学, 2011, 32(11): 1378-1390. doi: 10.3879/j.issn.1000-0887.2011.11.011
引用本文: 罗志强, 陈志敏. 基于Euler方程有限差分方法驻波晃动模拟[J]. 应用数学和力学, 2011, 32(11): 1378-1390. doi: 10.3879/j.issn.1000-0887.2011.11.011
LUO Zhi-qiang, CHEN Zhi-min. Sloshing Simulation of Standing Wave With a Time-Independent Finite Difference Method for Euler Equations[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1378-1390. doi: 10.3879/j.issn.1000-0887.2011.11.011
Citation: LUO Zhi-qiang, CHEN Zhi-min. Sloshing Simulation of Standing Wave With a Time-Independent Finite Difference Method for Euler Equations[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1378-1390. doi: 10.3879/j.issn.1000-0887.2011.11.011

基于Euler方程有限差分方法驻波晃动模拟

doi: 10.3879/j.issn.1000-0887.2011.11.011
详细信息
    作者简介:

    罗志强(1973- ),男,江西永新人,讲师,博士(联系人.E-mail:zql1009@126.com).

  • 中图分类号: O359+.1

Sloshing Simulation of Standing Wave With a Time-Independent Finite Difference Method for Euler Equations

  • 摘要: 研究在二维水槽带非线性自由面边界条件的Euler方程的数值解,数值模拟了驻波的波高.将不规则的物理区域变换为一个固定的正方形计算区域,在计算区域使用交错网格技术的目的是准确捕捉流场瞬间的波高值,应用由Bang-fuh Chen建立的时间无关有限差分方法求解不可压缩无粘Euler方程的数值解.通过数值结果表明,数值解很好地吻合分析解和以前出版的文献结果.从数值解可以看出,非线性现象和拍的现象非常明显,同时数值模拟了带初始驻波的水平激励和垂直激励运动,具有很好的数值效果.
  • [1] Abramson H N. The dynamic behavior of liquids in moving containers[R]. SP-106, Washington D C: National Aeronautics and Space Administration, 1966.
    [2] Miles J W. Nonlinear surface waves in closed basins[J]. Journal of Fluid Mechanics, 1976, 75(3): 419-448. doi: 10.1017/S002211207600030X
    [3] Miles J W. Internally resonant surface waves in a circular cylinder[J]. Journal of Fluid Mechanics, 1984, 149(12): 1-14. doi: 10.1017/S0022112084002500
    [4] Miles J W. Resonantly forced surface waves in a circular cylinder[J]. Journal of Fluid Mechanics, 1984, 149(12): 15-31. doi: 10.1017/S0022112084002512
    [5] Hutton R E. An investigation of resonant nonlinear nonplannar free surface oscillations of a fluid[R]. Washington D C: National Aeronautics and Space Administration, 1963.
    [6] Faltisen O M. A nonlinear theory of sloshing in rectangular tanks[J]. Journal of Ship Research, 1974, 18(4): 224-241.
    [7] Waterhouse D D. Resonant sloshing near a critical depth[J]. Journal of Fluid Mechanics, 1994, 281(12): 313-318. doi: 10.1017/S0022112094003125
    [8] Faltisen O M. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth[J]. Journal of Fluid Mechanics, 2000, 407(3): 201-234. doi: 10.1017/S0022112099007569
    [9] Whitham G B. Nonlinear dispersion of water waves[J]. Journal of Fluid Mechanics, 1967, 27: 399-412. doi: 10.1017/S0022112067000424
    [10] Balk A M. A Lagrangian for water waves[J]. Physics of Fluids, 1996, 8(2): 416-420. doi: 10.1063/1.868795
    [11] La Rocca M, Mele P, Armenio V. Variational approach to the problem of sloshing in a moving container[J]. Journal of Theoretical and Applied Fluid Mechanics, 1997, 1(4): 280-310.
    [12] Sirovich L. New Perspectives in Turbulence[M]. Berlin: Springer, 1991.
    [13] Sriram V, Sannasiraj S A, Sundar V. Numerical simulation of 2D sloshing waves due to horizontal and vertical random excitation[J]. Applied Ocean Research, 2006, 28(1): 19-32. doi: 10.1016/j.apor.2006.01.002
    [14] Frandsen J B. Numerical bridge deck studies using finite elements. part Ⅰ: flutter[J]. Journal of Fluids and Structures, 2004, 19(2): 171-191. doi: 10.1016/j.jfluidstructs.2003.12.005
    [15] Lin P Z. A gixed-grid model for simulation of a moving body in free surface flows[J]. Computers & Fluids, 2007, 36(3): 549-561.
    [16] Lhner R, Yang C, On··ate E. On the simulation of flows with violent free surface motion[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41/43): 5597-5620. doi: 10.1016/j.cma.2005.11.010
    [17] Chen Y H, Hwang W S, Hao C. Numerical simulation of the three-dimensional sloshing problem by boundary element method[J]. Journal of the Chinese Institute of Engineers, 2000, 23(3): 321-330. doi: 10.1080/02533839.2000.9670552
    [18] Chen B F. Nonlinear hydrodynamic pressures by earthquakes on dam face with arbitrary reservoir shapes[J]. Journal of Hydraulic Research, 1994, 32(30): 401-413. doi: 10.1080/00221689409498742
    [19] Chen B F, Nokes R. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank[J]. Journal of Computational Physics, 2005, 209(1): 47-81. doi: 10.1016/j.jcp.2005.03.006
    [20] Chen B F. Viscous fluid in a tank under coupled surge, heave and pitch motions[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2005, 131(5): 239-256. doi: 10.1061/(ASCE)0733-950X(2005)131:5(239)
    [21] Wu C H, Chen B F. Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method[J]. Ocean Engineering, 2009, 36(6): 500-510. doi: 10.1016/j.oceaneng.2009.01.020
    [22] Lapidus L, Pinder G F. Numerical Solution of Partial Differential Equations in Science and Engineering[M]. New York: John Wiley and Sons, 1982.
    [23] Hoffman J D. Numerical Methods for Engineers and Scientists[M]. New York: McGraw-Hill Inc, 1993.
    [24] Nakayama T, Washizu K. The boundary element method applied to the analysis of two dimensional nonlinear sloshing problems[J]. International Journal for Numerical Methods in Engineering, 1981, 17(11): 1631-1646. doi: 10.1002/nme.1620171105
    [25] Wu G X. Second order resonance of sloshing in a tank[J]. Ocean Engineering, 2007, 34(17/18): 2345-2349. doi: 10.1016/j.oceaneng.2007.05.004
  • 加载中
计量
  • 文章访问数:  1576
  • HTML全文浏览量:  104
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-20
  • 修回日期:  2011-09-05
  • 刊出日期:  2011-11-15

目录

    /

    返回文章
    返回