留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多GPU的格子Boltzmann法对槽道湍流的直接数值模拟

许丁 陈刚 王娴 李跃明

许丁, 陈刚, 王娴, 李跃明. 基于多GPU的格子Boltzmann法对槽道湍流的直接数值模拟[J]. 应用数学和力学, 2013, 34(9): 956-964. doi: 10.3879/j.issn.1000-0887.2013.09.009
引用本文: 许丁, 陈刚, 王娴, 李跃明. 基于多GPU的格子Boltzmann法对槽道湍流的直接数值模拟[J]. 应用数学和力学, 2013, 34(9): 956-964. doi: 10.3879/j.issn.1000-0887.2013.09.009
XU Ding, CHEN Gang, WANG Xian, LI Yue-ming. Direct Numerical Simulation of the Wall-Bounded Turbulent Flow by Lattice Boltzmann Method Based on Multi-GPU[J]. Applied Mathematics and Mechanics, 2013, 34(9): 956-964. doi: 10.3879/j.issn.1000-0887.2013.09.009
Citation: XU Ding, CHEN Gang, WANG Xian, LI Yue-ming. Direct Numerical Simulation of the Wall-Bounded Turbulent Flow by Lattice Boltzmann Method Based on Multi-GPU[J]. Applied Mathematics and Mechanics, 2013, 34(9): 956-964. doi: 10.3879/j.issn.1000-0887.2013.09.009

基于多GPU的格子Boltzmann法对槽道湍流的直接数值模拟

doi: 10.3879/j.issn.1000-0887.2013.09.009
基金项目: 国家自然科学基金资助项目(11242010;11102150);中央高校基本科研业务费专项资金资助项目
详细信息
    作者简介:

    许丁 (1980—),男,博士,讲师(E-mail:dingxu@mail.xjtu.edu.cn);王娴 (1977—),女,博士,副教授(通讯作者.E-mail: wangxian@mail.xjtu.edu.cn).

  • 中图分类号: TB126; O351

Direct Numerical Simulation of the Wall-Bounded Turbulent Flow by Lattice Boltzmann Method Based on Multi-GPU

Funds: The National Natural Science Foundation of China(11242010;11102150)
  • 摘要: 采用多GPU并行的格子Boltzmann方法(lattice Boltzmann method, LBM)对充分发展的槽道湍流进行了直接数值模拟.GPU(graphic processing unit)的数据并行单指令多线程(single-instruction multiple-thread, SIMT)特征与LBM完美的并行性相匹配,使得LBM求解器在GPU上运行获得了极高的性能,亦使得大规模DNS(direct numerical simulation)在桌面级计算机上进行成为可能.采用8个GPU,网格数目达到6.7×107,全场网格尺寸Δ+=1.41.模拟3×106个时间步长,用时仅24 h.另外,直接模拟结果无论是在平均流速或湍流统计量上均与Moser等的结果吻合得很好,这也证实了二阶精度的格子Boltzmann法直接模拟湍流的能力与有效性
  • [1] Chen S Y, Doolen G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30: 329-364.
    [2] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009. (HE Ya-ling, WANG Yong, LI Qing.Lattice Boltzmann Method: Theory and Applications[M]. Beijing: Science Press, 2009. (in Chinese))
    [3] Yu H, Girimaji S S, Luo L S. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method[J]. Journal of Computational Physics,2005,209(2): 599-616.
    [4] Yu H, Luo L S, Girimaji S S. LES of turbulent square jet flow using an MRT lattice Boltzmann model[J].Computers &Fluids,2006,35(8/9): 957-965.
    [5] Moser R D, Kim J, Mansour N N. Direct numerical simulation of turbulent channel flow up to Reτ=590[J]. Phys Fluids,1999,11(4): 943-945.
    [6] Kim J, Moin P, Moser R D. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. J Fluid Mech, 1987, 177: 133-166.
    [7] Nvidia. NVIDIA CUDA Programming Guide[K]. Version 2.0. 2008.
    [8] Ogawa S, Aoki T. GPU computing for 2dimensional incompressible-flow simulation based on multi-grid method[C]//Transactions of JSCES. Paper No20090021. 2009.
    [9] Harada T. Smoothed particle hydrodynamics on GPUs[C]//Proceeding of the Spring Conference on Computer Graphics, 2007: 235-241.
    [10] Rossinelli D, Bergdorf M, Cottet GH, Koumoutsakosa P. GPU accelerated simulations of bluff body flows using vortex particle methods[J]. Journal of Computational Physics, 2010, 229(9): 3316-3333.
    [11] Wang X, Aoki T. MultiGPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster[J]. Parallel Computing, 2011, 37(9): 521-535.
    [12] Shimokawabe T, Aoki T, Takaki T, Endo T, Yamanaka A, Maruyama N, Nukada A, Matsuoka S. Petascale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer[C]//Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. New York, USA, 2011.
    [13] Shimokawabe T, Aoki T, Ishida J, Kawano K, Muroi C. 145 TFlops performance on 3990 GPUs of TSUBAME 2.0 supercomputer for an operational weather prediction[C]// Proceedings of the International Conference on Computational Science, ICCS 〖STBX〗2011, 2011, 4: 1535-1544.
    [14] Wang X, Aoki T. High performance computation by multi-node GPU cluster-TSUBAME 2.0 on the air flow in an urban city using lattice Boltzmann method[J]. International Journal of Aerospace and Lightweight Structures, 2012, 2(1): 77-86.
    [15] Miki T, Wang X, Aoki T, Imai Y, Ishikawa T, Takase K, Yamaguchi T. Patientspecific modeling of pulmonary air flow using GPU cluster for the application in medical practice[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15(7): 771-778.
    [16] Lammers P, Beronov K N, Volkert R, Brenner G, Durst F.Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow[J]. Computers & Fluids, 2006, 35(10): 1137-1153.
    [17] Jimenez J, Moin P. The minimal flow unit in near-wall turbulence[J]. Journal of Fluid Mechanics, 1991, 225(1): 213-240.
    [18] Spasov M, Rempfer D, Mokhasi P. Simulation of turbulent channel flow with an entropic lattice Boltzmann method[J]. Int J Numer Meth Fluids, 2009, 60(11): 1240-1258.
    [19] Pope S B. Turbulent Flows[M]. Cambridge: Cambridge University Press, 2000.
  • 加载中
计量
  • 文章访问数:  1566
  • HTML全文浏览量:  113
  • PDF下载量:  1389
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-30
  • 修回日期:  2013-06-05
  • 刊出日期:  2013-09-15

目录

    /

    返回文章
    返回