留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FEMLIP的全风化边坡失稳破坏全过程的数值模拟研究

王曼灵 王爱涛 李阳 彭俊强 李树忱

王曼灵, 王爱涛, 李阳, 彭俊强, 李树忱. 基于FEMLIP的全风化边坡失稳破坏全过程的数值模拟研究[J]. 应用数学和力学, 2019, 40(3): 269-281. doi: 10.21656/1000-0887.390206
引用本文: 王曼灵, 王爱涛, 李阳, 彭俊强, 李树忱. 基于FEMLIP的全风化边坡失稳破坏全过程的数值模拟研究[J]. 应用数学和力学, 2019, 40(3): 269-281. doi: 10.21656/1000-0887.390206
WANG Manling, WANG Aitao, LI Yang, PENG Junqiang, LI Shuchen. Numerical Simulation of the Whole Instability and Destruction Process for Fully Weathered Slopes Based on the FEMLIP[J]. Applied Mathematics and Mechanics, 2019, 40(3): 269-281. doi: 10.21656/1000-0887.390206
Citation: WANG Manling, WANG Aitao, LI Yang, PENG Junqiang, LI Shuchen. Numerical Simulation of the Whole Instability and Destruction Process for Fully Weathered Slopes Based on the FEMLIP[J]. Applied Mathematics and Mechanics, 2019, 40(3): 269-281. doi: 10.21656/1000-0887.390206

基于FEMLIP的全风化边坡失稳破坏全过程的数值模拟研究

doi: 10.21656/1000-0887.390206
基金项目: 国家重点研发计划(2016YFC0600803)
详细信息
    作者简介:

    王曼灵(1994—),女,硕士生 (E-mail: 372961272@qq.com);李树忱(1973—),男,教授,博士,博士生导师(通讯作者. E-mail: shuchenli@sdu.edu.cn).

  • 中图分类号: U416.1+4

Numerical Simulation of the Whole Instability and Destruction Process for Fully Weathered Slopes Based on the FEMLIP

Funds: The National Key R&D Program of China(2016YFC0600803)
  • 摘要: 边坡坡角和强度是影响边坡稳定性的重要因素,而边坡失稳往往伴随着大变形的发生,其变形从数十米至数千米不等.目前,传统有限元法在处理大变形问题时常常因网格畸变而导致计算终止.因此,为了实现边坡失稳破坏全过程的模拟,并研究边坡坡角和强度对边坡稳定性的影响,基于Lagrange(拉格朗日)积分点有限元法(FEMLIP),采用C语言编写了能够模拟边坡失稳滑塌全过程的Ellipsis程序,并通过一个典型案例对该方法的正确性和可行性进行了验证.采用该方法分析了边坡在不同坡角和强度条件下的稳定性和滑坡过程.研究结果表明,Lagrange积分点有限元法可以较准确地模拟边坡的潜在滑移面,并且可以模拟边坡失稳后的滑坡发展过程,为边坡滑坡大变形分析提供了一种新的数值计算方法.
  • [1] PASTOR M, HADDAD B, SORBINO G, et al. A depth-integrated, coupled SPH model for flow-like landslides and related phenomena[J]. International Journal for Numerical & Analytical Methods in Geomechanics,2010,33(2): 143-172.
    [2] 唐宇峰, 施富强, 廖学燕. 基于SPH的土质边坡稳定性及失稳后大变形数值模拟[J]. 地下空间与工程学报, 2018,14(1): 280-286.(TANG Yufeng, SHI Fuqiang, LIAO Xueyan. Numerical simulation of stability and large deformation of soil slope based on SPH method[J]. Chinese Journal of Underground Space and Engineering,2018,14 (1): 280-286.(in Chinese))
    [3] FAVIER L, DAUDON D, DONZ F, et al. Predicting the drag coefficient of a granular flow using the discrete element method[J]. Journal of Statistical Mechanics Theory & Experiment,2009,2009(6): P06012.
    [4] FAUG T, CACCAMO P, CHANUT B. Equation for the force experienced by a wall overflowed by a granular avalanche: experimental verification[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics,2011,84(5Pt1): 051301.
    [5] 邱家用, 张建良, 孙辉, 等. 并罐式无钟炉顶装料行为的离散元模拟及实验研究[J]. 应用数学和力学, 2014,35(6): 598-609.(QIU Jiayong, ZHANG Jianliang, SUN Hui, et al. DEM simulation and experimental investigation of burden distribution in the parallel-hopper bell-less top blast furnace[J]. Applied Mathematics and Mechanics,2014,35(6): 598-609.(in Chinese))
    [6] MORESI L, DUFOUR F, HLHAUS H B. A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[J]. Journal of Computational Physics,2003,184(2): 476-497.
    [7] CUOMO S, PRIME N, IANNONE A, et al. Large deformation FEMLIP drained analysis of a vertical cut[J]. Acta Geotechnica,2013,8(2): 125-136.
    [8] PRIME N, DUFOUR F, DARVE F. Unified model for geomaterial solid/fluid states and the transition in between[J]. Journal of Engineering Mechanics,2013,140(6): 682-694.
    [9] PRIME N, DUFOUR F, DARVE F. Solid-fluid transition modelling in geomaterials and application to a mudflow interacting with an obstacle[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2014,38(13): 1341-1361.
    [10] LI Z H, DUFOUR F, DARVE F. Hydro-elasto-plastic modelling with a solid/fluid transition[J]. Computers and Geotechnics,2016,75: 69-79.
    [11] LI Z H, DUFOUR F, DARVE F. Modelling rainfall-induced mudflows using FEMLIP and a unified hydro-elasto-plastic model with solid-fluid transition[J]. European Journal of Environmental & Civil Engineering,2018,22(4): 491-521.
    [12] 蒙伟娟, 陈祖安, 白武明. 地幔柱与岩石圈相互作用过程的数值模拟[J]. 地球物理学报, 2015,58(2): 495-503.(MENG Weijuan, CHEN Zu’an, BAI Wuming. Numerical simulation on process of the plume-lithosphere interaction[J]. Chinese Journal of Geophysics,2015,58(2): 495-503.(in Chinese))
    [13] 白帆, 陈祖安, 白武明. 地幔柱与岩石圈相互作用过程中熔融问题的数值模拟[J]. 地球物理学报, 2018,61(4): 1341-1351.(BAI Fan, CHEN Zu’an, BAI Wuming. Numerical simulation on the melting process of the mantle plume-lithosphere interaction[J]. Chinese Journal of Geophysics,2018,61(4): 1341-1351.(in Chinese))
    [14] KATZ O, MORGAN J K, AHARONOV E, et al. Controls on the size and geometry of landslides: insights from discrete element numerical simulations[J]. Geomorphology,2014,220: 104-113.
    [15] O’NEILL C, MORESI L, MLLER D, et al. Ellipsis 3D: a particle-in-cell finite-element hybrid code for modelling mantle convection and lithospheric deformation[J]. Computers & Geosciences,2006,32(10): 1769-1779.
    [16] MORESI L, DUFOUR F, HLHAUS H B. A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[J]. Journal of Computational Physics,2003,184(2): 476-497.
    [17] MORESI L, SOLOMATOV V. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the earth and venus[J].Geophysical Journal International,2008,133(3): 669-682.
    [18] TACKLEY P J. Self-consistent generation of tectonic plates in three-dimensional mantle convection[J]. Earth and Planetary Science Letters,1998,157(1): 9-22.
    [19] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2009.(FEI Kang, ZHANG Jianwei. Application of ABAQUS in Geotechnical Engineering [M]. Beijing: China Water & Power Press, 2009.(in Chinese))
  • 加载中
计量
  • 文章访问数:  966
  • HTML全文浏览量:  172
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-24
  • 修回日期:  2018-12-20
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回