Volume 45 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
WU Ziying, ZHU Rongxian, JANG Donggui, CHAO Guoqiang, ZHANG Yuxuan. Research on Dynamic Characteristics of Serial-Parallel-Ⅱ Inerter Nonlinear Energy Sink[J]. Applied Mathematics and Mechanics, 2024, 45(7): 907-921. doi: 10.21656/1000-0887.440350
Citation: WU Ziying, ZHU Rongxian, JANG Donggui, CHAO Guoqiang, ZHANG Yuxuan. Research on Dynamic Characteristics of Serial-Parallel-Ⅱ Inerter Nonlinear Energy Sink[J]. Applied Mathematics and Mechanics, 2024, 45(7): 907-921. doi: 10.21656/1000-0887.440350

Research on Dynamic Characteristics of Serial-Parallel-Ⅱ Inerter Nonlinear Energy Sink

doi: 10.21656/1000-0887.440350
  • Received Date: 2023-12-08
  • Rev Recd Date: 2024-02-17
  • Publish Date: 2024-07-01
  • A serial-parallel-Ⅱ inerter nonlinear energy sink was proposed through replacement of the linear restoring force and linear damping with the nonlinear restoring force and nonlinear damping in inertial vibration reduction systems, in view of the effects of friction. The dynamic equation for the main system was established, the amplitude-frequency response curves of the system under the base simple harmonic excitation were solved with the harmonic balance method. The effects of the inertia ratio, nonlinear damping, nonlinear stiffness and friction on the vibration damping performance of the system were studied with the arc length algorithm and the numerical method. The results show that, with the increase of the nonlinear stiffness and nonlinear damping, the peak value will first decrease and then increase. The difference is that the amplitude-frequency response curve of the former gradually bends to the upper right direction, and the position of the peak value of the latter shifts to the lower frequency band. The actions of 3 parameters of the inertial ratio, nonlinear damping and nonlinear stiffness, on the damping effects of the system were analyzed. The research indicates that, with an excitation amplitude of 0.005 m, the vibration reduction effect will be the best when the inertia ratio and damping change simultaneously. For ε=0.1, the minimum value of the peak displacement of the main structure of the system will be about 0.01 m, while for ε=0.001, the maximum value within the overall value range will be approximately 0.061 m, and the amplitude damping ratio will be 97.1% and 82.1%, respectively. When the inertia ratio reaches optimal value 0.1, the nonlinear damping range and nonlinear stiffness κ21 will grow larger. Under friction, the maximum amplitude of the system will have different degrees of increases. The research results provide a reference for the study on structural vibration reduction.
  • loading
  • [1]
    孔宪仁, 张也弛. 两自由度非线性吸振器在简谐激励下的振动抑制[J]. 航空学报, 2012, 33 (6): 1020-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206008.htm

    KONG Xianren, ZHANG Yechi. Vibration suppression of a two-degree-of-freedom nonlinear energy sink under harmonic excitation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33 (6): 1020-1029. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206008.htm
    [2]
    LUONGO A, ZULLI D. Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method[J]. Journal of Vibration and Control, 2014, 20 (13) : 1985-1998. doi: 10.1177/1077546313480542
    [3]
    BICHIOU Y, HAJJ M R, NAYFEH A H. Effectiveness of a nonlinear energy sink in the control of an aeroelastic system[J]. Nonlinear Dynamics, 2016, 86 (4): 2161-2177. doi: 10.1007/s11071-016-2922-y
    [4]
    HARTOG J P D. Mechanical Vibrations[M]. New York: McGraw-Hill Book Company, 1947.
    [5]
    VAKAKIS A F. Inducing passive nonlinear energy sinks in vibrating systems[J]. Journal of Vibration and Acoustics, 2001, 123 (3): 324-332. doi: 10.1115/1.1368883
    [6]
    VAKAKIS A F, MANEVITCH L I, GENDELMAN O, et al. Dynamics of linear discrete systems connected to local essentially nonlinear attachments[J]. Journal of Sound and Vibration, 2003, 264 (3): 559-577. doi: 10.1016/S0022-460X(02)01207-5
    [7]
    KERSCHEN G, LEE Y S, VAKAKIS A F, et al. Irreversible passive energy transfer in coupled oscillators with essential nonlinearity[J]. SIAM Journal on Applied Mathematics, 2005, 66 (2): 648-679. doi: 10.1137/040613706
    [8]
    GOURDON E, ALEXANDER N A, TAYLOR C A, et al. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results[J]. Journal of Sound and Vibration, 2007, 300 (3): 522-551.
    [9]
    VAKAKIS A F, AL-SHUDEIFAT M A, HASANM A. Interactions of propagating waves in a one-dimensional chain of linear oscillators with a strongly nonlinear local attachment[J]. Meccanica, 2014, 49 (10): 2375-2397. doi: 10.1007/s11012-014-0008-9
    [10]
    刘中坡, 乌建中, 王菁菁, 等. 轨道型非线性能量阱对高层结构脉动风振的控制仿真[J]. 振动工程学报, 2016, 29 (6): 1088-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606019.htm

    LIU Zhongpo, WU Jianzhong, WANG Jingjing, et al. Simulation of track nonlinear energy sink for wind-induced vibration control in high-rise building[J]. Journal of Vibration Engineering, 2016, 29 (6): 1088-1096. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606019.htm
    [11]
    王菁菁, 浩文明, 吕西林. 轨道非线性能量阱阻尼对其减振性能的影响[J]. 振动与冲击, 2017, 36 (24): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724005.htm

    WANG Jingjing, HAO Wenming, LÜ Xilin. Influence of track nonlinear energy sink damping on its vibration reduction performance[J]. Journal of Vibration and Shock, 2017, 36 (24): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724005.htm
    [12]
    刘中坡, 吕西林, 鲁正, 等. 轨道型非线性能量阱振动控制的振动台试验研究[J]. 建筑结构学报, 2016, 37 (11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201611001.htm

    LIU Zhongpo, LÜ Xilin, LU Zheng, et al. Experimental investigation on vibration control effect of track nonlinear energy sink[J]. Journal of Building Structures, 2016, 37 (11): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201611001.htm
    [13]
    李东辉, 李晨, 张业伟, 等. 杠杆型串联非线性能量阱整星隔振系统的振动控制[J]. 振动与冲击, 2022, 41 (16): 278-284. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202216036.htm

    LI Donghui, LI Chen, ZHANG Yewei, et al. Vibration control of a whole star vibration isolator system based on lever-type series nonlinear energy sink[J]. Journal of Vibration and Shock, 2022, 41 (16): 278-284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202216036.htm
    [14]
    李晨, 陈国一, 方勃, 等. 杠杆型并联非线性能量阱的振动控制[J]. 振动与冲击, 2021, 40 (15): 54-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115008.htm

    LI Chen, CHEN Guoyi, FANG Bo, et al. Vibration control for lever-type parallel nonlinear energy trap[J]. Journal of Vibration and Shock, 2021, 40 (15): 54-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115008.htm
    [15]
    HABIB G, ROMEO F. The tuned bistable nonlinear energy sink[J]. Nonlinear Dynamics, 2017, 89 (1) : 179-196. doi: 10.1007/s11071-017-3444-y
    [16]
    陈洋洋, 陈凯, 谭平, 等. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36 (3): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903017.htm

    CHEN Yangyang, CHEN Kai, TAN Ping, et al. A study on structural seismic control performance by nonlinear energy sinks with negative stiffness[J]. Engineering Mechanics, 2019, 36 (3): 149-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903017.htm
    [17]
    ZANG J, CHEN L Q. Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink[J]. Acta Mechanica Sinica, 2017, 33 (4): 801-822. doi: 10.1007/s10409-017-0671-x
    [18]
    谭平, 刘良坤, 陈洋洋, 等. 非线性能量阱减振系统受基底简谐激励的分岔特性分析[J]. 工程力学, 2017, 34 (12): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201712009.htm

    TAN Ping, LIU Liangkun, CHEN Yangyang, et al. Bifurcation analysis of nonlinear energy sink absorption system under ground harmonic excitation[J]. Engineering Mechanics, 2017, 34 (12): 67-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201712009.htm
    [19]
    YANG K, ZHANG Y W, DING H, et al. Nonlinear energy sink for whole-spacecraft vibration reduction[J]. Journal of Vibration and Acoustics, 2017, 139 (2): 021011. doi: 10.1115/1.4035377
    [20]
    WANG J, WIERSCHEM N, SPENCER B F, et al. Experimental study of track nonlinear energy sinks for dynamic response reduction[J]. Engineering Structures, 2015, 94: 9-15. doi: 10.1016/j.engstruct.2015.03.007
    [21]
    SAVADKOOHI A T, VAURIGAUD B, LAMARQUE C H, et al. Targeted energy transfer with parallel nonlinear energy sinks, part Ⅱ: theory and experiments[J]. Nonlinear Dynamics, 2012, 67 (1): 37-46. doi: 10.1007/s11071-011-9955-z
    [22]
    BOROSON E, MISSOUM S, MATTEI P, et al. Optimization under uncertainty of parallel nonlinear energy sinks[J]. Journal of Sound and Vibration, 2017, 394: 451-464. doi: 10.1016/j.jsv.2016.12.043
    [23]
    CHEN J E, HE W, ZHANG W, et al. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks[J]. Nonlinear Dynamics, 2018, 91 (2): 885-904. doi: 10.1007/s11071-017-3917-z
    [24]
    ARAKAKI T, KURODA H, ARIMA F, et al. Development of seismic devices applied to ball screw, part 1: basic performance test of RD-series[J]. AIJ Journal of Technology and Design, 1999, 5 (8): 239-244. doi: 10.3130/aijt.5.239_1
    [25]
    SMITH M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47 (10): 1648-1662. doi: 10.1109/TAC.2002.803532
    [26]
    潘超, 张瑞甫, 王超, 等. 单自由度混联Ⅱ型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36 (1): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201901014.htm

    PAN Chao, ZHANG Ruifu, WANG Chao, et al. Stochastic seismic response and design of structural system with series-parallel-Ⅱ inerter system[J]. Engineering Mechanics, 2019, 36 (1): 129-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201901014.htm
    [27]
    周子博, 申永军, 邢海军, 等. 含惯容和杠杆元件的减振系统参数优化及性能分析[J]. 振动工程学报, 2022, 35 (2): 407-416. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202202016.htm

    ZHOU Zibo, SHEN Yongjun, XING Haijun, et al. Parameter optimization and performance analysis of vibration mitigation systems with inertia and lever components[J]. Journal of Vibration Engineering, 2022, 35 (2): 407-416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202202016.htm
    [28]
    刘志彬, 谭平, 王菁菁, 等. 新型非对称惯容NES减震控制性能研究[J]. 振动与冲击, 2023, 42 (2): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202302014.htm

    LIU Zhibin, TAN Ping, WANG Jingjing, et al. Performance analysis of a novel asymmetric inerter NES for seismic response mitigation[J]. Journal of Vibration and Shock, 2023, 42 (2): 116-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202302014.htm
    [29]
    EBRAHIMI M, WHALLEY R. Analysis modeling and simulation of stiffness in machine tool drives[J]. Computer and Industrial Engineering, 2000, 38 (1): 93-105. doi: 10.1016/S0360-8352(00)00031-0
    [30]
    范舒铜, 申永军. 简谐激励下黏弹性非线性能量阱的研究[J]. 力学学报, 2022, 54 (9): 2567-2576. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202209018.htm

    FAN Shutong, SHEN Yongjun. Research on a viscoelastic nonlinear energy sink under harmonic excitation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (9): 2567-2576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202209018.htm
    [31]
    张振. 惯容型非线性能量汇及其结构减振[D]. 上海: 上海大学, 2019.

    ZHANG Zhen. Inertial nonlinear energy sink and its suppression of structural vibration[D]. Shanghai: Shanghai University, 2019. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (93) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return