WU Feng, GAO Qiang, ZHONG Wan-xie. Close Eigenvalues of Periodic Structures With Finite Unit Cells[J]. Applied Mathematics and Mechanics, 2013, 34(11): 1119-1129. doi: 10.3879/j.issn.1000-0887.2013.11.001
Citation: WU Feng, GAO Qiang, ZHONG Wan-xie. Close Eigenvalues of Periodic Structures With Finite Unit Cells[J]. Applied Mathematics and Mechanics, 2013, 34(11): 1119-1129. doi: 10.3879/j.issn.1000-0887.2013.11.001

Close Eigenvalues of Periodic Structures With Finite Unit Cells

doi: 10.3879/j.issn.1000-0887.2013.11.001
Funds:  The National Basic Research Program of China (973 Program)(2009CB918501)
  • Received Date: 2013-07-31
  • Rev Recd Date: 2013-09-01
  • Publish Date: 2013-11-15
  • For a periodic structure with finite unit cells, the range where eigenvalues existed was estimated based on the eigenproblem of the unit cell. A more precise estimate of the eigenvalue distriution range for a one dimensional periodic structure with finite unit cells was presented based on the energy band theory in solid physics. In terms of the estimated range of eigenvalues, the close eigenvalue phenomenon was made clear. The analysis results show that, for a periodic structure with finite unit cells, the larger the number of the unit cells is, the closer the eigenvalues are. Numerical tests demonstrate the correctness of the proposed conclusions.
  • loading
  • [1]
    于岩磊, 高维成, 刘伟, 王兆敏, 孙毅. 密集模态结构模态跃迁分析的简化摄动法[J]. 工程力学,2012, 29(3): 33-40.(YU Yan-lei, GAO Wei-cheng, LIU Wei, WANG Zhao-ming, SUN Yi. Simplified perturbation method for analyzing the mode jumping of close mode structure[J].Engineering Mechanics,2012, 29(3): 33-40.(in Chinese))
    [2]
    Kushwaha M S, Halevi P, Dobrzynski L, DjafariRouhani B. Acoustic band structure of periodic elastic composites[J].Physical Review Letters,1993, 71(13): 2022-2025.
    [3]
    刘玉民, 张帆, 吴蕙. 水轮发电机组结构密集特征值求解新方法[J]. 机械强度, 1996, 18(4): 9-11.(LIU Yu-min, ZHANG Fan, WU Hui. A new method for solving the concentrated eigenvalues of the water trubogenerator [J].Journal of Mechanical Strength,1996, 18(4): 9-11.(in Chinese))
    [4]
    徐涛, 陈塑寰, 赵建华. 接近亏损系统的矩阵摄动法[J]. 力学学报, 1998, 30(4): 120-124.(XU Tao, CHEN Su-huan, ZHAO Jian-hua. Perturbation method of near defective systems[J].Acta Mechanica Sinca,1998, 30(4): 120-124.(in Chinese))
    [5]
    刘中生, 陈塑寰, 王家林, 赵又群. 密集模态摄动的新方法[J]. 固体力学学报, 1993, 14(1): 1-6.(LIU Zhong-sheng, CHEN Su-huan, WANG Jia-lin, ZHAO You-qun. A new matrix perturbation method for closely spaced eigenvalues of vibration[J].Chinese Journal of Solid Mechanics,1993, 14(1): 1-6.(in Chinese))
    [6]
    刘璐. 密集型固有振模电力系统模态不稳定现象的研究[D]. 硕士学位论文. 保定: 华北电力大学, 2009.(LIU Lu. Research on the phenomenon of modes instability in close modes power system[D]. Master Thesis. Baoding: North China Electric Power University, 2009.(in Chinese))
    [7]
    周树荃, 戴华. 求解大型对称特征值问题的块Chebyshev-Lanczos方法[J]. 南京航空航天大学学报, 1989, 21(4): 22-28.(ZHOU Shu-quan, DAI Hua. The block Chebyshev-Lanczos method for solving large symmetric eigenvalue problems[J].Journal of Nanjing Aeronautical Institute,1989, 21(4): 2228.(in Chinese))
    [8]
    赵又群, 刘中生, 陈塑寰. 密集模态的判断准则[J]. 吉林工业大学学报, 1996, 26(3): 79-82.(ZHAO You-qun, LIU Zhong-sheng, CHEN Su-huan. Judging criterion of closely spaced modes[J].Journal of Jilin University of Technology,1996, 26(3): 7982.(in Chinese))
    [9]
    刘中生, 陈塑寰. 频率集聚时模态分析的移位摄动法[J]. 宇航学报, 1993(1): 81-88.(LIU Zhong-sheng, CHEN Su-huan. Perturbation analyses of vibration modes with close eigenvalues by eigenvalue shift[J].Journal of Astronautics,1993(1): 8188.(in Chinese))
    [10]
    吕振华. 重特征值及其特征向量摄动重分析方法探讨[J]. 振动工程学报, 1993, 6(4): 327-335.(Lü Zhen-hua. An investigation into the perturbational reanalysis method of repeated eigenvalues and associated eigenvectors[J].Journal of Vibration Engineering,1993, 6(4): 327-335.(in Chinese))
    [11]
    陈塑寰, 徐涛, 韩万芝. 线性振动亏损系统的矩阵摄动理论[J]. 力学学报, 1992, 24(6): 747-754.(CHEN Su-huan, XU Tao, HAN Wan-zhi. Matrix perturbation for linear vibration deffective systems[J].Acta Mechanica Sinica,1992, 24(6): 747-754.(in Chinese))
    [12]
    陈塑寰. 结构振动分析的矩阵摄动理论[M]. 重庆出版社, 1991.(CHEN Su-huan.The Matrix Perturbation Theory for the Analysis of Structural Vibration [M]. Chongqing Publishing House, 1991.(in Chinese))
    [13]
    胡海昌. 参数小变化对本征值的影响[J]. 力学与实践, 1981, 3(2): 29-31.(HU Hai-chang. The influence of parameters of small changes to this eigenvalue[J].Mechanics in Engineering,1981, 3(2): 29-31.(in Chinese))
    [14]
    黄昆. 固体物理学[M]. 北京: 高等教育出版社, 1998.(HUANG Kun.Solid State Physics [M]. Beijing: Higher Education Press, 1998.(in Chinese)) [15]Zhong W X, Williams F W. On the localization of the vibration mode of a substructural chaintype structure[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,1991, 205(4): 281-288.
    [15]
    Zhong W X, Williams F W. Wave problems for repetitive structures and symplectic mathematics[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,1992, 206(6): 371-379.
    [16]
    高强, 张腾, 钟万勰. 一维离散结构能带结构与表面态的辛分析方法[J]. 固体力学学报, 2011, 32(4): 372-381.(GAO Qiang, ZHANG Teng, ZHONG Wan-xie. Symplectic method for energy bands and surface states of 1D periodic structure with defects[J].Chinese Journal of Solid Mechanics,2011, 32(4): 372-381.(in Chinese))
    [17]
    钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2005.(ZHONG Wan-xie.Symplectic Solution Methodology in Applied Mechanics [M]. Beijing: Higher Education Press, 2005.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1350) PDF downloads(1104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return