| [1] | Reddy J N, Wang C M. An overview of the relationships between solutions of the classical and shear deformation plate theories[J].Composites Science and Technology,2000,60(12/13):2327—2335. doi:  10.1016/S0266-3538(00)00028-2 | 
		
				| [2] | Wang C M, Lee K H. Buckling load relationship between Reddy and Kirchhoff circular plates[J].Journal of Franklin Institute,1998,335(6):989—995. doi:  10.1016/S0016-0032(97)00047-1 | 
		
				| [3] | Wang C M, Reddy J N. Buckling load relationship between Reddy and Kirchhoff plates of polygonal shape with simply supported edges[J].Mechanics Research Communications,1997,24(1):103—108. doi:  10.1016/S0093-6413(96)00084-5 | 
		
				| [4] | Wang C M, Kitipornchai S, Xiang Y. Relationships between buckling loads of Kirchhoff, Mindlin, and Reddy polygonal plates on Pasternak foundation[J].ASCE Journal of Engineering Mechanics,1997,123(11):1134—1137. doi:  10.1061/(ASCE)0733-9399(1997)123:11(1134) | 
		
				| [5] | Wang C M, Kitipornchai S, Reddy J N. Relationship between vibration frequencies of Reddy and Kirchhoff polygonal plates with simply supported edges[J].ASME Journal of Vibration and Acoustics,2000,122(1):77—81. doi:  10.1115/1.568438 | 
		
				| [6] | Cheng Z Q, Kitipornchai S. Exact eigenvalue correspondences between laminated plate theories via membrane vibration[J].International Journal of Solids and Structure,2000,37(16):2253—2264. doi:  10.1016/S0020-7683(99)00006-2 | 
		
				| [7] | Ma L S,Wang T J.Relationships between the solutions of axisymmetric bending and buckling of functionally graded circular plates based on the third-order plate theory and the classical solutions of isotropic circular plates[J].International Journal of Solids and Structures,2004,41(1):85—101. doi:  10.1016/j.ijsolstr.2003.09.008 | 
		
				| [8] | Reddy J N. A simple higher-order theory for laminated composite plates[J]. ASME Journal of Applied Mechanics,1984,51(4):745—752. doi:  10.1115/1.3167719 | 
		
				| [9] | Wang C M. Discussion on “Postbuckling of moderately thick circular plates with edge elastic restraint”[J].ASCE Journal of Engineering Mechanics,1996,122(2):181—182. doi:  10.1061/(ASCE)0733-9399(1996)122:2(181) | 
		
				| [10] | Pnueli D. Lower bounds to the gravest and all higher frequencies of homogeneous vibrating plates of arbitrary shape[J].ASME Journal of Applied Mechanics,1975,42(4):815—820. doi:  10.1115/1.3423712 | 
		
				| [11] | Wang C M. Vibration frequencies of simply supported polygonal sandwich plates via Kirchhoff solutions[J].Journal of Sound and Vibration,1996,190(2):255—260. doi:  10.1006/jsvi.1996.0060 | 
		
				| [12] | Wang C M. Natural frequencies formula for simply supported Mindlin plates[J].ASME Journal of Vibration and Acoustics,1994,116(4):536—540. doi:  10.1115/1.2930460 | 
		
				| [13] | Timoshenko S P, Gere J M.Theory of Elastic Stability[M].New York:McGraw-Hill,1961,226. | 
		
				| [14] | Timoshenko S, Young D H W, Weaver J R.Vibration Problems in Engineering[M].New York:John Wiley & Sons,1974,124. |