| [1] | Brockenbrough J R, Suresh S, Wienecke H A. Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape[J].Acta Metall Mater,1991,39(5):735—752. doi:  10.1016/0956-7151(91)90274-5 | 
		
				| [2] | Christman T,Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites[J].Acta Metall Mater,1989,37(11):3029—3050. doi:  10.1016/0001-6160(89)90339-8 | 
		
				| [3] | Hashin Z,Strikman S.A variational approach to the theory of the elastic behavior of multiphase materials[J].J Mech Phys Solids,1963,11(2):127—140. doi:  10.1016/0022-5096(63)90060-7 | 
		
				| [4] | Chen H S, Acrivos A. The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations[J].Internat J Solids and Structures,1978,14(3):349—364. doi:  10.1016/0020-7683(78)90017-3 | 
		
				| [5] | Hill R. A self consistent mechanics of composite materials[J].J Mech Phys Solids,1965,13(4):213—222. doi:  10.1016/0022-5096(65)90010-4 | 
		
				| [6] | Hori M,Nemat-Nasser S. Double inclusion model and overall moduli of multiphase composites[J].J Mech Phys Solids,1993,14(2):189—206. | 
		
				| [7] | Bao G, Hutchinson J W,McMeeking R M.Plastic reinforcement of ductile matrices against plastic flow and creep[J].Acta Metall Mater,1991,39(5):1871—1882. doi:  10.1016/0956-7151(91)90156-U | 
		
				| [8] | Ghosh S, Mukhopadhyay S N. A material based finite elemtent analysis of heterogeneous media involving Dirichlet tessellations[J].Comput Methods Appl Mech Engrg,1993,104(3/4):211—247. doi:  10.1016/0045-7825(93)90198-7 | 
		
				| [9] | Pian T H H. Derivation of element stiffness matrices by assumed stress distribution[J].AAIA J,1964,2(5):1333—1336. doi:  10.2514/3.2546 | 
		
				| [10] | Zhang J,Katsube N.Problems related to application of eigenstrains in a finite element analysis[J].Internat J Numer Methods Engrg,1994,37(18):3185—3193. doi:  10.1002/nme.1620371811 | 
		
				| [11] | Zhang J, Katsube N. A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions[J].Internat J Numer Methods Engrg,1995,38(10):1635—1653. doi:  10.1002/nme.1620381004 | 
		
				| [12] | Ghosh S, Moorthy S.Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method[J].Comput Methods Appl Mech Engrg,1995,121(1/4):373—409. doi:  10.1016/0045-7825(94)00687-I | 
		
				| [13] | Ghosh S Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method[J].Internat J Solids and Structures,1995,32(1):27—62. doi:  10.1016/0020-7683(94)00097-G | 
		
				| [14] | Grujicic M, Zhang Y.Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method[J].Materials Science and Engineering,Ser A,1998,251(1):64—76. doi:  10.1016/S0921-5093(98)00647-9 | 
		
				| [15] | Lee K, Ghosh S.A microstructure based numerical method for constitutive modeling of composite and porous materials[J].Materials Science and Engineering,Ser A,1999,272(1):120—133. doi:  10.1016/S0921-5093(99)00475-X | 
		
				| [16] | Raghavan P,Li S,Ghosh S. Two scale response and damage modeling of composite materials[J].Finite Elements in Analysis and Design,2004,40(12):1619—1640. doi:  10.1016/j.finel.2003.11.003 | 
		
				| [17] | 钟万勰.岩土力学中的参变量最小余能原理[J].力学学报,1986,18(3):253—258. | 
		
				| [18] | 钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用[M].北京:科学技术出版社,1997. | 
		
				| [19] | Zhang H W, Xu W L, Di S L,et al.Quadratic programming method in numerical simulation of metal forming process[J].Comput Methods Appl Mech Engrg,2002, 191(49):5555—5578. doi:  10.1016/S0045-7825(02)00462-0 | 
		
				| [20] | Zhang H W,Zhang X W,Chen J S. A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems[J].Computers and Structures,2003,81(17):1739—1749. doi:  10.1016/S0045-7949(03)00167-6 | 
		
				| [21] | Zhang H W, Schrefler B A. Gradient-dependent plasticity model and dynamic strain localization analysis of saturated and partially saturated porous media: one dimensional model[J].European Journal of Solid Mechanics A/Solids,2000,19(3):503—524. doi:  10.1016/S0997-7538(00)00177-7 |