| [1] | Petzold L R, Jay L O,Yen J. Numerical solution of highly oscillatory ordinary differential equations[J].Acta Numerica,1997,6:437—483. doi:  10.1017/S0962492900002750 | 
		
				| [2] | Hairer E, Lubich C,Wanner G.Geometric Numerical Integration[M].Ch XIII.Berlin:Springer Verlag,2002. | 
		
				| [3] | Gautschi W. Numerical integration of ordinary differential equations based on trigonometric polynomials[J].Numer Math,1961,3(1):381—397. doi:  10.1007/BF01386037 | 
		
				| [4] | García-Archilla B, Sanz-Serna J M,Skeel R D. Long-time-step methods for oscillatory differential equations[J].SIAM J Sci Comput,1998,20(3):930—963. doi:  10.1137/S1064827596313851 | 
		
				| [5] | Hochbruck M, Lubich C.A Gautschi-type method for oscillatory second-order differential equations[J].Numer Math,1999,83(3):403—426. doi:  10.1007/s002110050456 | 
		
				| [6] | Iserles A, Nrsett S P. On the solution of linear differential equations in Lie groups[J].Philos Trans Roy Soc,Ser A,1999,357(1754):983—1020. doi:  10.1098/rsta.1999.0362 | 
		
				| [7] | Iserles A, Munthe Kaas H Z, Nrsett S P,et al.Lie-groups methods[J].Acta Numerica,2000,9:215—365. doi:  10.1017/S0962492900002154 | 
		
				| [8] | Iserles A. On the global error of discretization methods for highly-oscillatory ordinary differential equations[J].BIT,2002,42(3):561—599. doi:  10.1023/A:1022049814688 | 
		
				| [9] | Iserles A, Think globally, act locally: Solving highly-oscillatory ordinary differential equations[J].Appl Numer Anal,2002,43(1):145—160. | 
		
				| [10] | Iserles A.On Cayley-transform methods for the discretization of Lie-group equations[J].Found Comput Maths,2001,1(2):129—160. doi:  10.1007/s102080010003 | 
		
				| [11] | Hairer E,Nrsett S P,Wanner G.Solving Ordinary Differential Equations Ⅰ: Nonstiff Problems[M].Berlin:Springer-Verlag,1987. | 
		
				| [12] | Vigo-Aguiar J,Ferrándiz J M. A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems[J].SIAM J Numer Anal,1998,35(4):1684—1708. doi:  10.1137/S0036142995286763 | 
		
				| [13] | Zhang S, Deng Z.A simple and efficient fourth-order approximation solution for nonlinear dynamical systems[J].Mech Res Comm,2004,31(2):221—228. doi:  10.1016/j.mechrescom.2003.10.004 |