| [1] | Weinan E,Guo Y Rykov,Sinai Ya G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[J].Comm Phys Math,1996,177:349-380. doi:  10.1007/BF02101897 | 
		
				| [2] | Shandarin F,Zeldovich Ya B.The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitation medium[J].Reviews of Modern Physics,1989,61(2):185-220. doi:  10.1103/RevModPhys.61.185 | 
		
				| [3] | 李荫藩.第二阶“大粒子”差分法[J].中国科学A辑,1985,28(8):729-739. | 
		
				| [4] | Sheng W, Zhang T. The Riemann problem for transportation equation in gas dynamics[J].Mem Amer Math Soc,1999,137(654):1-77. | 
		
				| [5] | Li J,Yang S, Zhang T.The Two-Dimensional Riemann Problem in Gas Dynamics[M].Harlow:Longman Scientific and Technical,1998. | 
		
				| [6] | Korchinski D J.Solutions of a Riemann Problem for a 2× 2 System of Conservation Laws Possessing Classical Solutions[D].New York:Adelphi University Thesis,1977. | 
		
				| [7] | Floch Le P.An existence and uniqueness result for two nonstrictly hyperbolic systems[A].In:“Nonlinear Evolution Equations That Change Type,”IMA Volumes in Mathematics and Its Applications[C].New York/Berlin:Springer-Verlag,1990,27. | 
		
				| [8] | Tan D, Zhang T, Zheng Y. Delta-shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws[J].J Differential Equations,1994,112(1):1-32. doi:  10.1006/jdeq.1994.1093 | 
		
				| [9] | Yang H, Sun W. The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws[J].Nonlinear Analysis,2006, doi: 10.1016/j.na.2006.09.057. | 
		
				| [10] | Lax P D.Hyperbolic systems of conservation laws and the mathematical theory of shock waves[A].Conf Board Math Sci[C].Philadelphia:SLAM,1973,11. | 
		
				| [11] | Yang H. Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics[J].J Math Anal and Appl,2001,260(1):18-35. doi:  10.1006/jmaa.2000.7426 | 
		
				| [12] | Yang X. Research announcements: Un-selfsimilar elementary wave and global solutions of a class of multi-dimensional conservation laws[J].Advances in Mathematics (China),2005,34(3): 367-369. | 
		
				| [13] | 杨小舟, 黄飞敏.简化Euler方程的二维Riemann问题[J].科学通报,1998,43(6):441-444. | 
		
				| [14] | Yang X. Mulit-dimensional Riemann problem of scalar conservation laws[J].Acta Mathematica Scientia,1999,19(2):190-200. | 
		
				| [15] | Yang X. The Singular structure of Non-selfsimilar global n dimensional burgers equation[J].Acta Mathematicae Applicatae Sinica(English Series),2005,21(3),505-518. | 
		
				| [16] | Huang F,Wang Z.Well posedness for pressureless flow[J].Comm Math Phys,2001,222(1):117-146. doi:  10.1007/s002200100506 | 
		
				| [17] | Li J, Zhang T. Generalized Rankine-Hugoniot relations of delta-shocks in solutions of transportation equations[A].Advances in Nonlinear Partial Differential Equations and Related Area[C].Singapore:World Sci Publ,River Edge, NJ, 1998, 219-232. | 
		
				| [18] | Li J, Li W. Riemann problem for the zero-pressure flow in gas dynamics[J].Progr Natur Sci,2001,11(5):331-344. |