[1] |
Anderson M H, Ensher J R, Matthews M R,et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science,1995,269(5221): 198-201.
|
[2] |
MEN Fu-dian, LIU Hui, FAN Zhao-lan, et al. Relativistic thermodynamic properties of a weakly interacting Fermi gas[J]. Chinese Physics B, 2009,18 (7): 2649-2653.
|
[3] |
马云, 傅立斌, 杨志安, 等. 玻色-爱因斯坦凝聚体自囚禁现象的动力学相变及其量子纠缠特性[J]. 物理学报, 2006,55(11): 5623-5628.(MA Yun, FU Li-bing, YANG Zhi-an, et al. Dynamical phase changes of the self-trapping of Bose-Einstein condensates and its characteristic of entanglement[J]. Acta Physica Sinica,2006,55(11): 5623-5628.(in Chinese))
|
[4] |
WEN Wen, SHEN Shun-qing, HUANG Guo-xiang. Propagation of sound and supersonic bright solitons in superfluid Fermi gases in BCS-BEC crossover[J]. Physical Review B,2010,81(1): 014528.
|
[5] |
臧小飞, 李菊萍, 谭磊. 偶极-偶极相互作用下双势阱中旋量玻色-爱因斯坦凝聚磁化率的非线性动力学性质[J]. 物理学报, 2007,56(8): 4348-4352.(ZANG Xiao-fei, LI Ju-ping, TAN Lei. Nonlinear dynamical properties of susceptibility of a spinor Bose-Einstein condensate with dipole-dipole interaction in a double-well potential[J]. Acta Physica Sinica,2007,56(8): 4348-4352.(in Chinese))
|
[6] |
WANG Guan-fang, FU Li-bin, LIU Jie. Periodic modulation effect on self-trapping of two weakly coupled Bose-Einstein condensates[J]. Physical Review A,2006,73(1): 013619-1- 013619-7.
|
[7] |
QI Peng-tang, DUAN Wen-shan. Tunneling dynamics and phase transition of a Bose-Fermi mixture in a double well[J]. Physical Review A,2011,84(3): 033627-1-033627-8.
|
[8] |
Adhikari S K, Malomed B A, Salasnich L, et al. Spontaneous symmetry breaking of Bose-Fermi mixtures in double-well potentials[J]. Physical Review A,2010,〖STHZ〗 81(5): 053630-1-053630-9.
|
[9] |
CHENG Yong-shan, Adhikari S K. Localization of a Bose-Fermi mixture in a bichromatic optical lattice[J].Physical Review A,2011,84(2): 023632-1-023632-7.
|
[10] |
QI Ran, YU Xiao-lu, Li Z B, et al. Non-Abelian Josephson effect between two F=2 spinor Bose-Einstein condensates in double optical traps[J]. Physical Review Letters, 2009,102(18): 185301-1-185301-4.
|
[11] |
王文元, 蒙红娟, 杨阳, 等. 空间变尺度因子球坐标系与四维时空度规[J]. 物理学报, 2012,61(8): 087302.(WANG Wen-yuan, MENG Hong-juan, YANG Yang, et al. Variable space scale factor spherical coordinates and time-space metric[J].Acta Physica Sinica, 2012,61(8): 087302.(in Chinese))
|
[12] |
黄芳, 李海彬. 双势阱中玻色-爱因斯坦凝聚的绝热隧穿[J]. 物理学报, 2011,〖STHZ〗 60(2): 020303.(HUANG Fang, LI Hai-bing. Adiabatic tunneling of Bose-Einstein condensatein double-well potential[J].Acta Physica Sinica, 2011,60(2): 020303.(in Chinese))
|
[13] |
Modugno G, Roati G, Riboli F, et al. Collapse of a degenerate Fermi gas[J]. Science,2002,297(5590): 2240-2243.
|
[14] |
Volz T, Dürr S, Ernst S, et al. Characterization of elastic scattering near a Feshbach resonance in Rb-87[J].Physical Review A,2003,68(1): 010702.
|
[15] |
苟学强, 闫明, 令伟栋, 等. 费米气体在光晶格中的自俘获现象及其周期调制[J]. 物理学报,2013,62(13): 130308.(GOU Xue-qiang, YAN Ming, LING Wei-dong, et al. Self-trapping and periodic modulation of Fermi gases in optical lattices[J]. Acta Physica Sinica,2013,62(13): 130308.(in Chinese))
|
[16] |
MO Jia-qi. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Science in China(Ser A),1989,32(11): 1306-1315.
|
[17] |
MO Jia-qi. Homotopiv mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China(Ser G),2009,39(7): 1007-1010.
|
[18] |
MO Jia-qi, LIN Shu-rong. The homotopic mapping solution for the solitary wave for a generalized nonlinear evolution equation[J]. Chinese Physics B,2009,18(9): 3628-3631.
|
[19] |
莫嘉琪, 陈贤峰. 一类广义非线性扰动色散方程孤立波的近似解[J]. 物理学报, 2010,50(3): 1403-1408.(MO Jia-qi, CHEN Xian-feng. Approximate solution of solitary wave for a class of generalized nonlinear disturbed dispersive equation[J]. Acta Physica Sinica,2010,50(3): 1403-1408.(in Chinese))
|
[20] |
MO Jia-qi, CHEN Xian-feng. Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation[J]. Chinese Physics B, 2010,19(10): 100203.
|
[21] |
MO Jia-qi. Solution of travelling wave for nonlinear disturbed long-wave system[J]. Communications in Theoretical Physics, 2011,55(3): 387-390.
|
[22] |
MO Jia-qi, LIN Wan-tao, LIN Yi-hua. Asymptotic solution for the El Nio time delay sea-air oscillator model[J]. Chinese Physics B,2011,20(7): 070205.
|
[23] |
莫嘉琪. 扰动Vakhnenko方程物理模型的行波解[J]. 物理学报, 2011,60(9): 090203.(MO Jia-qi. Travelling wave solution of disturbed Vakhnenko equation for physical model travelling wave solution of disturbed Vakhnenko equation for physical model[J]. Acta Physica Sinica,2011,60(9): 090203.(in Chinese))
|
[24] |
莫嘉琪, 程荣军, 葛红霞. 具有控制项的弱非线性发展方程行波解[J]. 物理学报, 2011,60(5): 050204.(MO Jia-qi, CHENG Rong-jun, GE Hong-xia. Travelling wave solution of the weakly nonlinear evolution equation with control term[J]. Acta Physica Sinica,2011,60(5): 050204.(in Chinese))
|
[25] |
莫嘉琪. 一类非线性尘埃等离子体孤波解[J]. 物理学报, 2011,60(3): 030203.(MO Jia-qi. The solution for a class of nonlinear solitary waves in dusty plasma[J]. Acta Physica Sinica, 2011,60(3): 030203.(in Chinese))
|
[26] |
MO Jia-qi. Solution of travelling wave for nonlinear disturbed long-wave system[J]. Communications in Theoretical Physics,2011,55(2): 387-390.
|
[27] |
史娟荣, 石兰芳, 莫嘉琪. 一类非线性强阻尼扰动展方程的解[J]. 应用数学和力学, 2014,35(9): 1046-1054.(SHI Juan-rong, SHI Lan-fang, MO Jia-qi. The solutions for a class of nonlinear disturbed evolution equations[J]. Applied Mathematics and Mechanics,2014,35(9): 1046-1054.(in Chinese))
|
[28] |
史娟荣, 吴钦宽, 莫嘉琪. 非线性扰动广义NNV系统的孤子渐近行波解[J]. 应用数学和力学, 2015,36(9): 1003-1010.(SHI Juan-rong, WU Qin-kuan, MO Jia-qi. Asymptotic travelling wave solution of soliton for the nonlinear disturbed generalized NNV system[J]. Applied Mathematics and Mechanics,2015,36(9): 1003-1010.(in Chinese))
|
[29] |
史娟荣, 朱敏, 莫嘉琪. 广义Schrdinger扰动耦合系统孤子解[J]. 应用数学和力学, 2016,37(3): 319-330.(SHI Juan-rong, ZHU Ming, MO Jia-qi. Solitary olutions to generalized Schrdinger disturbed coupled systems[J]. Applied Mathematics and Mechanics,2016,37(3): 319-330.(in Chinese))
|
[30] |
SHI Juan-rong, LIN Wan-tao, MO Jia-qi. The singularly perturbed solution for a class of quasilinear nonlocal problem for higher two parameters[J]. J Nankai Univ,2015,48(1): 85-91.
|
[31] |
石兰芳, 陈贤峰, 韩祥临, 等. 一类Fermi气体在非线性扰动机制中轨线的渐近表示[J]. 物理学报, 2014,63(6): 060204.(SHI Lan-fang, CHEN Xian-feng, HAN Xiang-lin, et al. Asymptotic expressions of path curve for a class of Fermi gases in nonlinear disturbed mechanism[J]. Acta Physica Sinica, 2014,63(6): 060204.(in Chinese))
|
[32] |
Liao S J. Beyond Perturbation-Introduction to the Homotopy Analysis Method [M]. Boca Raton: Chapman & Hall/CRC, 2003.
|
[33] |
Liao S J. Beyond Perturbation: Introduction to the Homotopy Analysis Method [M]. New York: CRC Press Co, 2004.
|
[34] |
Liao S J. Homotopy Analysis Method in Nonlinear Differential Equations [M]. Heidelberg: Springer & Higher Education Press, 2012.
|
[35] |
de Jager E M, JIANG Fu-ru. The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing Co, 1996.
|
[36] |
Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problems [M]. Basel: Birkhauserm Verlag AG , 2007.
|