[1] |
Temam R.Navier-Stokes Equations: Theory and Numerical Analysis[M]. Rhode Island: American Mathematic Society, 2001.
|
[2] |
Trottenberg U, Oosterlee C W, Schüller A.Multigrid[M]. New York: Academic Press, 2001.
|
[3] |
Wienands R, Joppich W.Practical Fourier Analysis for Multigrid Methods[M]. Boca Raton, FL: Chapman and Hall/CRC Press, 2005.
|
[4] |
Briggs W L, Henson V E, McCormick S.A Multigrid Tutorial[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2000.
|
[5] |
Hackbusch W.Multi-Grid Methods and Applications[M]. Berlin: Springer, 1985.
|
[6] |
Wesseling P.An Introduction to Multigrid Methods[M]. Chichester, UK: John Wiley, 1992.
|
[7] |
Stuben K, Trottenberg U.Multigrid Methods: Fundamental Algorithms, Model Problem Analysis and Applications[M]. Hackbusch W, Trottenberg U, ed.Lectwe Notes in Mathematics,Vol960. Berlin: Springer-Verlag, 1982: 1-176.
|
[8] |
Brandt A, Livne O E.Multigrid Techniques: 1984 Guide With Applications to Fluid Dynamics[M]. Revised, ed. Society for Industrial and Applied Mathematics, 2011.
|
[9] |
Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics,1997,135(2): 250-258.
|
[10] |
Osher S, Chakravarthy S. Upwind schemes and boundary conditions with applications to Euler equations in general geometries[J].Journal of Computational Physics,1983,50(3): 447-481.
|
[11] |
Einfeldt B, Munz C D, Roe P L, Sjgreen B. On Godunov-type methods near low densities[J].Journal of Computational Physics,1991,92(2): 273-295.
|
[12] |
Abdullah S, LI Yuan, Aftab K. Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations[J].Applied Mathematics and Computation,2010,215(9): 3201-3213.
|
[13] |
Toro E F.Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. 2nd ed. Berlin: Springer-Verlag, 2009.
|
[14] |
Oosterlee C W, Lorenz F J G. Multigrid methods for the Stokes system[J].Computing in Science & Engineering,2006:8(6): 34-43.
|
[15] |
Wittum G. Multi-grid methods for Stokes and Navier-Stokes equations[J].Numerische Mathematic,1989,54(5): 543-563.
|
[16] |
WANG Ming, CHEN Long. Multigrid methods for the Stokes equations using distributive Gauss-Seidel relaxations based on the least squares commutator[J].Journal of Scientific Computing,2013,56(2): 409-431.
|
[17] |
ur Rehman M, Geenen T, Vuik C, Segal G, MacLachlan S P. On iterative methods for the incompressible Stokes problem[J].International Journal for Numerical Methods in Fluids,2011,65(10): 1180-1200.
|
[18] |
Bacuta C, Vassilevski P S, ZHANG Shang-you. A new approach for solving Stokes systems arising from a distributive relaxation method[J].Numerical Methods for Partial Differential Equations,2011,27(4): 898-914.
|
[19] |
Wienands R, Gaspar F J, Lisbona F J, Oosterlee C W. An efficient multigrid solver based on distributive smoothing for poroelasticity equations[J].Computing,2004,73(2): 99-119.
|
[20] |
Pillwein V, Takacs S. A local Fourier convergence analysis of a multigrid method using symbolic computation[J].Journal of Symbolic Computation,2014,63: 1-20.
|