留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥形微通道内液滴自输运特性及力学驱动机制研究

逄明华 刘焜 刘小君

逄明华, 刘焜, 刘小君. 锥形微通道内液滴自输运特性及力学驱动机制研究[J]. 应用数学和力学, 2017, 38(3): 284-294. doi: 10.21656/1000-0887.370158
引用本文: 逄明华, 刘焜, 刘小君. 锥形微通道内液滴自输运特性及力学驱动机制研究[J]. 应用数学和力学, 2017, 38(3): 284-294. doi: 10.21656/1000-0887.370158
PANG Ming-hua, LIU Kun, LIU Xiao-jun. Droplets’ Directional Motion Characteristics in Conical Microchannels and Driving Mechanisms[J]. Applied Mathematics and Mechanics, 2017, 38(3): 284-294. doi: 10.21656/1000-0887.370158
Citation: PANG Ming-hua, LIU Kun, LIU Xiao-jun. Droplets’ Directional Motion Characteristics in Conical Microchannels and Driving Mechanisms[J]. Applied Mathematics and Mechanics, 2017, 38(3): 284-294. doi: 10.21656/1000-0887.370158

锥形微通道内液滴自输运特性及力学驱动机制研究

doi: 10.21656/1000-0887.370158
基金项目: 国家自然科学基金(51375132)
详细信息
    作者简介:

    逄明华(1977—),男,博士生(E-mail: pangminghua909@163.com);刘焜(1963—),男,教授,博士生导师(通讯作者. E-mail: liukun@hfut.edu.cn).

  • 中图分类号: TB17

Droplets’ Directional Motion Characteristics in Conical Microchannels and Driving Mechanisms

Funds: The National Natural Science Foundation of China(51375132)
  • 摘要: 针对液体在微通道内的自输运特性,采用数值仿真与能量解析相结合的方法研究了液滴在锥形微通道内的自输运特性及力学驱动机制,得到微通道的锥形角、液滴与微通道内壁的接触角及微通道的润湿性对液滴自输运特性的影响关系.分析表明,微通道的锥形角、液滴与微通道内壁的接触角均能影响液滴的自输运方向及驱动力大小.对于亲水性微通道,微通道的锥形角、液滴与微通道内壁的接触角其作用效果呈现整体形态;对于疏水性微通道,微通道的锥形角、液滴与微通道内壁的接触角其作用效果呈现局域形态.这可为研究液体在微通道内的自输运机理及界面内液体细观流动机制奠定理论基础.
  • [1] CHEN Hua-wei, ZHANG Peng-fei, ZHANG Li-wen, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature,2016,532: 85-89.
    [2] JU Jie, ZHENG Yong-mei, JIANG Lei. Bioinspired one-dimensional materials for directional liquid transport[J]. Accounts of Chemical Research,2014,47(8): 2342-2352.
    [3] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature,2001,414: 33-34.
    [4] ZHENG Yong-mei, BAI Hao, HUANG Zhong-bing, et al. Directional water collection on wetted spider silk[J]. Nature,2010,463: 640-643.
    [5] BAI Hao, JU Jie, SUN Rui-ze, et al. Controlled fabrication and water collection ability of bioinspired artificial spider silks[J]. Advanced Materials,2011,23(32): 3708-3711.
    [6] Scriven L E, Sternling C V. The Marangoni effects[J]. Nature,1960,187: 186-188.
    [7] 赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012.(ZHAO Ya-pu. Physical Mechanics of Surfaces and Interfaces [M]. Beijing: Science Press, 2012.(in Chinese))
    [8] 赵亚溥. 纳米与介观力学[M]. 北京: 科学出版社, 2014.(ZHAO Ya-pu. Nano and Mesoscopic Mechanics [M]. Beijing: Science Press, 2014.(in Chinese))
    [9] Stone H A, Stroock A D, Adjari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics,2004,36: 381-411.
    [10] Velev O D, Prevo B G, Bhatt K H. On-chip manipulations of free droplets[J]. Nature,2003,426: 515-516.
    [11] Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves [M]. Reisinger A, transl. Berlin: Springer, 2003.
    [12] Srivastava N, Davenport R D, Burns M A. Nanoliter viscometer for analyzing blood plasma and other liquid samples[J]. Analytical Chemistry,2005,77(2): 383-392.
    [13] Di C D, Wu L Y, Lee L P. Dynamic single cell culture array[J].Lab Chip,2006,6(11): 1445-1449.
    [14] Kota A K, Kwon G, Choi W, et al. Hygro-responsive membranes for effective oil-water separation[J]. Nature Communications,2012,3: 1025.
    [15] 隋涛, 蒋亮, 汪家道, 等. 润湿性梯度表面上液滴运动的数值模拟[J]. 润滑与密封, 2011,36(10): 16-19.(SUI Tao, JIANG Liang, WANG Jia-dao, et al. Numerical simulation of droplet movement on surface with gradient wetting property[J]. Lubrication Engineering,2011,36(10): 16-19.(in Chinese))
    [16] ZHAO Bin, Moore J S, Beebe D J. Surface-directed liquid flow inside microchannels[J]. Science,2001,291(5506): 1023-1026.
    [17] Kim S H, Yang Y, Kim M, et al. Simple route to hydrophilic microfluidic chip fabrication using an ultraviolet (UV)-cured polymer[J]. Advanced Functional Materials,2007,17(17): 3493-3498.
    [18] 林林, 袁儒强, 张欣欣, 等. 液滴在梯度微结构表面上的铺展动力学分析[J]. 物理学报, 2015,64(15): 154705-1-154705-8.(LIN Lin, YUAN Ru-qiang, ZHANG Xin-xin, et al. Spreading dynamics of liquid droplet on gradient micro-structured surfaces[J]. Acta Physica Sinica,2015,64(15): 154705-1-154705-8.(in Chinese))
    [19] 殷雅俊, 陈超, 吕存景, 等. 曲率的形状梯度和经典梯度: 微纳米曲面上的驱动力[J]. 应用数学和力学, 2011,32(5): 509-521.(YIN Ya-jun, CHEN Chao, L Cun-jing, et al. Shape gradient and classical gradient of curvatures: driving forces on micro/nano curved surface[J]. Applied Mathematics and Mechanics,2011,32(5): 509-521.(in Chinese))
    [20] Lü Cun-jing, CHEN Chao, CHUANG Yin-chuan, et al. Ultrafast drop movements arising from curvature gradient[J/OL]. ArXiv: 1108.4590v1, 2011[2016-10-17]. https://arxiv.org/ftp/arxiv/papers/1108/1108.4590.pdf.
    [21] ZHENG Quan-shui, L Cun-jing, HAO Peng-fei, et al. Small is beautiful, and dry[J].Science China Physics, Mechanics and Astronomy,2010,53(12): 2245-2259.
    [22] LIU Jian-lin, XIA Re, LI Bing-wei, et al. Directional motion of droplet in a conical tube or on a conical fibre[J]. Chinese Physics Letters,2007,24(11): 3210-3213.
  • 加载中
计量
  • 文章访问数:  1120
  • HTML全文浏览量:  193
  • PDF下载量:  1161
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-23
  • 修回日期:  2016-06-14
  • 刊出日期:  2017-03-15

目录

    /

    返回文章
    返回