A Geometric Explanation of Hamilton-Jacobi Methods Based on the Frobenius Theorem
-
摘要: 给出了一阶偏微分方程特征微分方程组的一种基于Frobenius定理的几何解释,通过研究发现根据Frobenius定理可以从一阶偏微分方程直接得到其特征微分方程组;在此基础上说明如何利用几何方法从Hamilton正则方程出发找到与之对应的Hamilton-Jacobi方程.这种方法可以被用于非保守或非完整Hamilton力学问题的研究中,经典Hamilton-Jacobi方法是这种方法的一个特例.
-
关键词:
- Hamilton-Jacobi理论 /
- 一阶偏微分方程 /
- Frobenius定理
Abstract: With the differential geometry method, a geometric explanation based on the Frobenius theorem for characteristic equations of 1st-order partial differential equations was presented. According to the Frobenius theorem, the characteristic equations can be deduced directly from the 1st-order partial differential equations. Based on this, how to use the geometric method to find the corresponding Hamilton-Jacobi equations from Hamiltonian canonical equations was discussed. This method could be utilized to address the nonconservative or nonholonomic Hamiltonian mechanical problems. The classical Hamilton-Jacobi method is only a special case of this method. -
[1] Arnold V I. Mathematical Methods of Classical Mechanics [M]. New York: Springer-Verlag, 1978: 161-271. [2] 陈滨. 分析动力学[M]. 第2版. 北京: 北京大学出版社, 2012: 445-464.(CHEN Bin. Analytic Dynamics [M]. 2nd ed. Beijing: Peking University Press, 2012: 445-464.(in Chinese)) [3] 梅凤翔. 分析力学[M]. 北京: 北京理工大学出版社, 2013: 272-287.(MEI Feng-xiang. Analytical Mechanics [M]. Beijing: Beijing Institute of Technology Press, 2013: 272-287.(in Chinese)) [4] Marmo G, Morandi G, Mukunda N. A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations[J]. Rivista del Nuovo Cimento,1990,13(8): 1-74. [5] Barbero-Linán M, de León M, de Diego D M. Lagrangian submanifolds and the Hamilton-Jacobi equation[J]. Monatshefte für Mathematik,2013,171(3): 269-290. [6] Marmo G, Morandi G, Mukunda N. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics[J]. Journal of Geometric Mechanics,2009,1(3): 317-355. [7] Kim J H, Lee H W. Canonical transformations and the Hamilton-Jacobi theory in quantum mechanics[J]. Canadian Journal of Physics,1999,77(6): 411-425. [8] Fleming W H, Rishel R W. Deterministic and Stochastic Optimal Control [M]. Berlin: Springer, 1975: 80-105. [9] Fedkiw R P, Aslam T, Merrima B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the ghost fluid method)[J]. Journal of Computational Physics,1999,152(2): 457-492. [10] Courant R, Hilbert D. Methods of Mathematical Physics [M]. Vol2. New York: John Wiley & Sons, 1989: 62-153. [11] Levine H. Partial Differential Equation [M]. Vol6. Boston: International Press, 1997: 91-134. -
计量
- 文章访问数: 1926
- HTML全文浏览量: 344
- PDF下载量: 669
- 被引次数: 0