留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MPS-FEM耦合方法对比研究刚性与弹性挡板对液舱晃荡的抑制作用

张友林 陈翔 万德成

张友林, 陈翔, 万德成. 基于MPS-FEM耦合方法对比研究刚性与弹性挡板对液舱晃荡的抑制作用[J]. 应用数学和力学, 2016, 37(12): 1359-1377. doi: 10.21656/1000-0887.370514
引用本文: 张友林, 陈翔, 万德成. 基于MPS-FEM耦合方法对比研究刚性与弹性挡板对液舱晃荡的抑制作用[J]. 应用数学和力学, 2016, 37(12): 1359-1377. doi: 10.21656/1000-0887.370514
ZHANG You-lin, CHEN Xiang, WAN De-cheng. An MPS-FEM Coupled Method for the Comparative Study of Liquid Sloshing Flows Interacting With Rigid and Elastic Baffles[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1359-1377. doi: 10.21656/1000-0887.370514
Citation: ZHANG You-lin, CHEN Xiang, WAN De-cheng. An MPS-FEM Coupled Method for the Comparative Study of Liquid Sloshing Flows Interacting With Rigid and Elastic Baffles[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1359-1377. doi: 10.21656/1000-0887.370514

基于MPS-FEM耦合方法对比研究刚性与弹性挡板对液舱晃荡的抑制作用

doi: 10.21656/1000-0887.370514
基金项目: 国家自然科学基金(51379125; 51490675; 11432009; 51579145; 11272120);长江学者奖励计划(T2014099)
详细信息
    作者简介:

    万德成,E-mail: dcwan@sjtu.edu.cn

  • 中图分类号: O35; U663

An MPS-FEM Coupled Method for the Comparative Study of Liquid Sloshing Flows Interacting With Rigid and Elastic Baffles

Funds: National Natural Science Foundation of China(51379125; 51490675; 11432009; 51579145; 11272120) and the Chang Jiang Scholars Program of China(T2014099)
  • 摘要: 由流体冲击载荷引起的流固耦合问题广泛存在于船舶与海洋工程领域.例如:在特定激励频率下载液货舱内流体的非线性运动引起对舱壁的砰击作用,进而可能影响液舱围护系统的安全性.由于此类流固耦合问题通常涉及多学科知识,且流体自由面的变化具有强非线性特征,对研究人员带来较大挑战.考虑到Lagrange类方法在处理结构和流体自由面大变形问题上的优势,基于MPS-FEM耦合方法开发了流固耦合求解器.其中,采用MPS方法来数值模拟流体场瞬态变化,FEM方法来分析结构场的变形问题.此外,该求解器采用了弱耦合的方式来实现流体场和结构场之间的数据传递.为了验证该方法在处理流固耦合问题上的可靠性,首先数值研究了溃坝泄洪流与弹性挡板之间的流固耦合标准算例,数值结果与实验标准结果能够较好地吻合.此后,采用该求解器数值研究了带刚性挡板和弹性挡板的液舱晃荡问题,对比分析了多种激励频率下两种挡板对液舱内流体运动及舱壁上冲击压力的抑制效果.
  • [1] Idelsohn S R, Marti J, Limache A, Onate E. Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM[J]. Computer Methods in Applied Mechanics and Engineering,2008,197(19/20): 1762-1776.
    [2] Fossa M, Rizzo C M, Tani G, Viviani M. Simulations of a sloshing experiment by FEM CFD and FEM FSI approaches[C]//The 22nd International Offshore and Polar Engineering Conference. Rhodes, Greece, 2012: 530-537.
    [3] LIAO Kang-ping, HU Chang-hong. A coupled FDM-FEM method for free surface flow interaction with thin elastic plate[J]. Journal of Marine Science and Technology,2013,18(1): 1-11.
    [4] Paik K J, Carrica P M. Fluid-structure interaction for an elastic structure interacting with free surface in a rolling tank[J]. Ocean Engineering,2014,84: 201-212.
    [5] Koshizuka S, Oka Y. Moving particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering,1996,123: 421-434.
    [6] Khayyer A, Gotoh H. Modied moving particle semi-implicit methods for the prediction of 2D wave impact pressure[J]. Coastal Engineering,2009,56(4): 419-440.
    [7] Khayyer A, Gotoh H. A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method[J]. Applied Ocean Research,2010,32(1): 124-131.
    [8] Khayyer A, Gotoh H. Enhancement of stability and accuracy of the moving particle semi-implicit method[J]. Journal of Computational Physics,2011,230(8): 3093-3118.
    [9] Khayyer A, Gotoh H. A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations[J]. Applied Ocean Research,2012,37: 120-126.
    [10] Kondo M, Koshizuka S. Improvement of stability in moving particle semi-implicit method[J]. International Journal for Numerical Methods in Fluids,2011,65(6): 638-654.
    [11] Tanaka M, Masunaga T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility[J]. Journal of Computational Physics,2010,229(11): 4279-4290.
    [12] Ikari H, Khayyer A, Gotoh H. Corrected higher order Laplacian for enhancement of pressure calculation by projection-based particle methods with applications in ocean engineering[J]. Journal of Ocean Engineering and Marine Energy,2015,1(4): 361-376.
    [13] Mitsume N, Yoshimura S, Murotani K, Yamada T. MPS-FEM partitioned coupling approach for fluid-structure interaction with free surface flow[J]. International Journal of Computational Methods,2014,11(4): 4157-4160.
    [14] Mitsume N, Yoshimura S, Murotani K, Yamada T. Improved MPS-FE fluid-structure interaction coupled method with MPS polygon wall boundary model[J]. Computer Modeling in Engineering and Sciences,2014,101(4): 229-247.
    [15] Hwang S C, Khayyer A, Gotoh H, Park J C. Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems[J]. Journal of Fluids and Structures,2014,50: 497-511.
    [16] Hwang S C, Park J C, Gotoh H, Khayyer A, Kang K J. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method[J]. Ocean Engineering,2016,118: 227-241.
    [17] Sun Z, Xing J T, Djidjeli K, Cheng F. Coupling MPS and modal superposition method for flexible wedge dropping simulation[C]// The Twenty-fifth International Ocean and Polar Engineering Conference. Kona, Hawaii, USA, 2015:144-151.
    [18] Hou G, Wang J, Layton A. Numerical methods for fluid-structure interaction—a review[J]. Communications in Computational Physics,2012,12(2): 337-377.
    [19] Longatte E, Verremana V, Souli M. Time marching for simulation of fluid-structure interaction problems[J]. Journal of Fluids and Structures,2009,25(1): 95-111.
    [20] Heil M, Hazel A L, Boyle J. Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches[J]. Computational Mechanics,2008,43(1): 91-101.
    [21] Zhang Y L, Tang Z Y, Wan D C. Numerical investigations of waves interacting with free rolling body by modified MPS method[J]. International Journal of Computational Methods,2016,13(4): 1641013.
    [22] Tang Z Y, Zhang Y L, Wan D C. Multi-resolution MPS method for free surface flows[J].International Journal of Computational Methods,2016,13(4): 1641018.
    [23] Tang Z Y, Zhang Y L, Wan D C. Numerical simulation of 3D free surface flows by overlapping MPS[J]. Journal of Hydrodynamics,2016,28(2): 306-312.
    [24] Tang Z Y, Wan D C, Chen G, Xiao Q. Numerical simulation of 3D violent free surface flows by multi-resolution MPS method[J]. Journal of Ocean Engineering and Marine Energy,2016,2(3): 355-364.
    [25] Tang Z Y, Wan D C. Numerical simulation of impinging jet flows by modified MPS method[J]. Engineering Computations,2015,32(4): 1153-1171.
    [26] Zhang Y X, Wan D C, Hino T. Comparative study of MPS method and level-set method for sloshing flows[J]. Journal of Hydrodynamics,2014,26(4): 577-585.
    [27] Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method[J]. International Journal for Numerical Methods in Fluids,1998,26(7): 751-769.
    [28] Lee B H, Park J C, Kim M H, Hwang S C. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads[J]. Computer Methods in Applied Mechanics and Engineering,2011,200(9/12): 1113-1125.
    [29] Newmark N M. A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division,1959,85: 67-94.
    [30] Hsiao K M, Lin J Y, Lin W Y. A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams[J]. Computer Methods in Applied Mechanics and Engineering,1999,169(1/2): 1-18.
    [31] Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid-structure interaction by SPH[J]. Computers and Structures,2007,85(11/14): 879-890.
  • 加载中
计量
  • 文章访问数:  1045
  • HTML全文浏览量:  137
  • PDF下载量:  589
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-26
  • 修回日期:  2016-12-07
  • 刊出日期:  2016-12-15

目录

    /

    返回文章
    返回