留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

E-Borwein真有效解的刻画

唐莉萍 杨玉红

唐莉萍, 杨玉红. E-Borwein真有效解的刻画[J]. 应用数学和力学, 2017, 38(12): 1399-1404. doi: 10.21656/1000-0887.380238
引用本文: 唐莉萍, 杨玉红. E-Borwein真有效解的刻画[J]. 应用数学和力学, 2017, 38(12): 1399-1404. doi: 10.21656/1000-0887.380238
TANG Li-ping, YANG Yu-hong. Characterizations of E-Borwein Properly Efficient Solutions[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1399-1404. doi: 10.21656/1000-0887.380238
Citation: TANG Li-ping, YANG Yu-hong. Characterizations of E-Borwein Properly Efficient Solutions[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1399-1404. doi: 10.21656/1000-0887.380238

E-Borwein真有效解的刻画

doi: 10.21656/1000-0887.380238
基金项目: 国家自然科学基金(11431004; 11626048; 11701057);重庆市科委项目(cstc2016jcyjA0178);重庆市教委项目(KJ1600613)
详细信息
    作者简介:

    唐莉萍(1985—),女,副教授,博士(通讯作者. E-mail: tanglipings@163.com);杨玉红(1979—),女,讲师,博士生.

  • 中图分类号: O221.2|O221.6

Characterizations of E-Borwein Properly Efficient Solutions

Funds: The National Natural Science Foundation of China(11431004; 11626048; 11701057)
  • 摘要: 基于Borwein真有效解的思想,利用free disposal集提出了向量优化问题的一类近似Borwein真有效解概念,建立了其与E-Benson真有效解间的等价关系
  • [1] Kuhn H W, Tucker A W. Nonlinear programming[C]// Proceeding of the Second Berkeley Symposium on Mathematical Statistics and Probability . Berkeley: University of California Press, 1951: 481-492.
    [2] Geoffrion A M. Proper efficiency and the theory of vector maximization[J]. Journal of Mathematical Analysis and Applications,1968,22(3): 618-630.
    [3] Borwein J. Proper efficient points for maximizations with respect to cones[J]. SIAM Journal on Control and Optimization,1977,15(1): 57-63.
    [4] Benson H P. An improved definition of proper efficiency for vector maximization with respect to cones[J]. Journal of Mathematical Analysis and Applications,1979,71(1): 232-241.
    [5] Henig M I. Proper efficiency with respect to cones[J]. Journal of Optimization Theory and Applications,1982,36(3): 387-407.
    [6] Borwein J M, Zhuang D. Super efficiency in vector optimization[J]. Transactions of the American Mathematical Society,1993,338(1): 105-122.
    [7] Chicco M, Mignanego F, Pusillo L, et al. Vector optimization problems via improvement sets[J]. Journal of Optimization Theory and Applications,2011,150(3): 516-529.
    [8] Gutiérrez C, Jiménez B, Novo V. Improvement sets and vector optimization[J]. European Journal of Operational Research,2012,223(2): 304-311.
    [9] ZHAO Ke-quan, YANG Xin-min. E-Benson proper efficiency in vector optimization[J]. Optimization,2015,64(4): 739-752.
    [10] Chicco M, Rossi A. Existence of optimal points via improvement sets[J]. Journal of Optimization Theory and Applications,2015,167(2): 487-501.
    [11] Lalitha C S, Chatterjee P. Stability and scalarization in vector optimization using improvement sets[J]. Journal of Optimization Theory and Applications,2015,166(3): 825-843.
    [12] ZHAO Ke-quan, YANG Xin-min. E -proper saddle points and E-proper duality in vector optimization with set-valued maps[J]. Taiwanese Journal of Mathematics,2014,18(2): 483-495.
    [13] ZHAO Ke-quan, XIA Yuan-mei, YANG Xin-min. Nonlinear scalarization characterizations of E-efficiency in vector optimization[J]. Taiwanese Journal of Mathematics,2015,19(2): 455-466.
    [14] ZHAO Ke-quan, CHEN Guang-ya, YANG Xin-min. Approximate proper efficiency in vector optimization[J]. Optimization,2015,64(8): 1777-1793.
    [15] XIA Yuan-mei, ZHANG Wan-li, ZHAO Ke-quan. Characterizations of improvement sets via quasi interior and applications in vector optimization[J]. Optimization Letters,2016,10(4): 769-780.
    [16] Oppezzi P, Rossi A. Existence and convergence of optimal points with respect to improvement sets[J]. SIAM Journal on Optimization,2016,26(2): 1293-1311.
    [17] Gutiérrez C, Huerga L, Novo V, et al. Duality related to approximate proper solutions of vector optimization problems[J]. Journal of Global Optimization,2016,64(1): 117-139.
  • 加载中
计量
  • 文章访问数:  1175
  • HTML全文浏览量:  173
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-24
  • 修回日期:  2017-10-10
  • 刊出日期:  2017-12-15

目录

    /

    返回文章
    返回