留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用RBF网络的喷雾机喷杆自适应动态面跟踪控制

芦泽阳 李树江 王向东

芦泽阳, 李树江, 王向东. 采用RBF网络的喷雾机喷杆自适应动态面跟踪控制[J]. 应用数学和力学, 2019, 40(7): 801-809. doi: 10.21656/1000-0887.390270
引用本文: 芦泽阳, 李树江, 王向东. 采用RBF网络的喷雾机喷杆自适应动态面跟踪控制[J]. 应用数学和力学, 2019, 40(7): 801-809. doi: 10.21656/1000-0887.390270
LU Zeyang, LI Shujiang, WANG Xiangdong. Adaptive RBF-Network Dynamic Surface Tracking Control of Sprayer Boom Systems[J]. Applied Mathematics and Mechanics, 2019, 40(7): 801-809. doi: 10.21656/1000-0887.390270
Citation: LU Zeyang, LI Shujiang, WANG Xiangdong. Adaptive RBF-Network Dynamic Surface Tracking Control of Sprayer Boom Systems[J]. Applied Mathematics and Mechanics, 2019, 40(7): 801-809. doi: 10.21656/1000-0887.390270

采用RBF网络的喷雾机喷杆自适应动态面跟踪控制

doi: 10.21656/1000-0887.390270
基金项目: 国家“十三五”重点课题(2016YFD0700104)
详细信息
    作者简介:

    芦泽阳(1993—),男,硕士生(通讯作者. E-mail: lzyluxiaoyang@163.com).

  • 中图分类号: TH273

Adaptive RBF-Network Dynamic Surface Tracking Control of Sprayer Boom Systems

  • 摘要: 为了实现喷雾机喷杆快速而准确地伺服跟踪农作物冠层高度,选用电液伺服系统作为其位置调节装置,系统建模以喷雾机喷杆为负载的电液伺服系统.首先,充分考虑系统的强非线性和参数不确定因素,建立完整的数学模型;然后,采用动态面方法设计控制器,通过RBF网络对不确定项和非线性函数进行逼近,在控制律中加入阻尼项补偿干扰对系统性能的影响;基于Lyapunov稳定性方法,证明闭环系统信号最终一致有界;最后,对某喷雾机喷杆系统进行仿真验证,结果表明设计控制器具有良好的仿形跟踪控制性能.
  • [1] 陈晨, 薛新宇, 顾伟, 等. 喷雾机喷杆结构形状及截面尺寸优化与试验[J]. 农业工程学报, 2015,31(9): 50-56.(CHEN Chen, XUE Xinyu, GU Wei, et al. Experiment and structure shape and section size optimization of spray boom[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(9): 50-56.(in Chinese))
    [2] 陈树人, 韩红阳, 陈刚, 等. 喷杆喷雾机机架动态特性分析与减振设计[J]. 农业机械学报, 2013,44(4): 50-53.(CHEN Shuren, HAN Hongyang, CHEN Gang, et al. Dynamic characteristic analysis and vibration reduction design for sprayer frame[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(4): 50-53.(in Chinese))
    [3] 陈双, 宗长富, 张立军, 等. 主动悬架平顺性和侧倾姿态综合控制策略[J]. 吉林大学学报(工学版), 2011,41(2): 59-64.(CHEN Shuang, ZONG Changfu, ZHANG Lijun, et al. Research on integrated control strategy of ride and roll attitude via active suspension[J]. Journal of Jilin University(Engineering and Technology Edition),2011,41(2): 59-64.(in Chinese))
    [4] 吴吉麟, 苗玉斌. 不同激励源下宽幅喷雾机喷杆的动态特性分析[J]. 农业工程学报, 2012,28(4): 39-44.(WU Jilin, MIAO Yubin. Dynamic characteristic analysis of boom for wide sprayer with different exciting sources[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(4): 39-44.(in Chinese))
    [5] 陈文坊, 邱白晶, 杨宁, 等. 基于超声波传感器的喷杆位姿控制系统[J]. 农机化研究, 2013,34(3): 84-87.(CHEN Wenfang, QIU Baijing, YANG Ning, et al. Spray boom position control system based on ultrasonic sensors[J]. Journal of Agricultural Mechanization Research,2013,34(3): 84-87.(in Chinese))
    [6] 魏新华, 邵菁, 缪丹丹, 等. 喷杆式喷雾机喷杆高度及平衡在线调控系统[J]. 农业机械学报, 2015,46(8): 66-71.(WEI Xinhua, SHAO Jing, MIAO Dandan, et al. Online control system of spray boom height and balance[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(8): 66-71.(in Chinese))
    [7] 石胜利, 李建雄, 方一鸣. 具有输入饱和的电液伺服系统反步位置跟踪控制[J]. 中南大学学报(自然科学版), 2016,47(10): 3369-3374.(SHI Shengli, LI Jianxiong, FANG Yiming. Backstepping position tracking control for electro-hydraulic servo system with input saturation[J]. Journal of Central South University(Science and Technology),2016,47(10): 3369-3374.(in Chinese))
    [8] SUN Y B, GUO Q D. Feedback linearization speed-tracking control of linear servo system based on sliding mode observer[J]. Journal of Control Theory and Applications,2014,21(6): 391-397.
    [9] 俞珏, 庄健, 于德弘. 采用李雅普诺夫函数的电液伺服系统反馈线性化控制[J]. 西安交通大学学报, 2014,48(7): 71-76.(YU Jue, ZHUANG Jian, YU Dehong. Feedback linearization control for an electro-hydraulic servo system using Lyapunov functions[J]. Journal of Xi’an Jiaotong University,2014,48(7): 71-76.(in Chinese))
    [10] 杨四阳, 韩江, 张魁榜, 等. 电液位置伺服系统的鲁棒自适应控制[J]. 应用数学和力学, 2017,38(6): 676-684.(YANG Siyang, HAN Jiang, ZHANG Kuibang, et al. A robust adaptive backstepping control method for electro-hydraulic position servo systems[J]. Applied Mathematics and Mechanics,2017,38(6): 676-684.(in Chinese))
    [11] 陈光荣, 王军政, 汪首坤, 等. 自适应鲁棒控制器设计新方法在电液伺服系统中的应用[J]. 自动化学报, 2016,42(3): 375-384.(CHEN Guangrong, WANG Junzheng, WANG Shoukun, et al. Application of a new adaptive robust controller design method to electro-hydraulic servo system[J]. Acta Automatica Sinica,2016,42(3): 375-384.(in Chinese))
    [12] 方一鸣, 许衍泽, 李建雄. 具有输入饱和的电液伺服位置系统自适应动态面控制[J]. 控制理论与应用, 2014,31(4): 511-518.(FANG Yiming, XU Yanze, LI Jianxiong. Adaptive dynamic surface control for electro-hydraulic servo position system with input saturation[J]. Control Theory & Applications,2014,31(4): 511-518.(in Chinese))
    [13] 吴忠强, 夏青, 彭艳, 等. 高阶非线性液压辊缝系统的Backstepping动态面控制[J]. 仪器仪表学报, 2012,33(4): 949-954.(WU Zhongqiang, XIA Qing, PENG Yan, et al. Backstepping dynamic surface control for high-order nonlinear hydraulic roll gap system[J]. Chinese Journal of Scientific Instrument,2012,33(4): 949-954.(in Chinese))
    [14] WONHEE K, SHIN D, WON D, et al. Disturbance observer based position tracking controller in the presence of biased sinusoidal disturbance for electrohydraulic actuators[J]. IEEE Transactions on Control Systems Technology,2013,21(6): 2290-2298.
    [15] SHI S L, FANG Y M, LI J X, et al. Adaptive position tracking control for electro-hydraulic servo system with input saturation[J]. ICIC Express Letters,2012,6(10): 2699-2704.
    [16] WEN C Y, ZHOU J, LIU Z T, et al. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance[J]. IEEE Transactions on Automatic Control,2017,56(7): 1672-1678.
    [17] 张天平, 施枭铖, 沈启坤. 具有未建模动态的自适应神经网络动态面控制[J]. 控制理论与应用, 2013,30(4): 475-481.(ZHANG Tianping, SHI Xiaocheng, SHEN Qikun. Adaptive neural-network dynamic surface-control with unmodeled dynamics[J]. Control Theory & Applications,2013,30(4): 475-481.(in Chinese)
  • 加载中
计量
  • 文章访问数:  779
  • HTML全文浏览量:  119
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 修回日期:  2019-05-10
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回