[1] |
TADMOR E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[J]. Acta Numerica,2003,12(12): 451-512.
|
[2] |
ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions Ⅱ: entropy production at shocks[J]. Journal of Computational Physics,2009,228(15): 5410-5436.
|
[3] |
FJORDHOLM U, MISHRAS, TADMOR E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis,2012,50(2): 544-573.
|
[4] |
郑素佩, 封建湖, 刘彩侠. 高分辨率熵相容算法在二维溃坝问题中的应用[J]. 水动力学研究与进展(A辑), 2013,28(5): 545-551.(ZHENG Supei, FENG Jianhu, LIU Caixia. Application of high resolution entropy compatible algorithm in two-dimensional dam failure problem[J]. Journal of Hydrodynamics,2013,28(5): 545-551.(in Chinese))
|
[5] |
CHENG X H, NIE Y F, FENG J H. Self-adjusting entropy-stable scheme for compressible Euler equations[J]. Chinese Physics B,2015,24(2): 020202. DOI: 10.1088/1674-1056/24/2/020202.
|
[6] |
RAY D, CHANDRASHEKAR P, FJORDHOLM U S. Entropy stable scheme on two-dimensional unstructured grids for Euler equations[J]. Communications in Computational Physics,2016,19(5): 1111-1140.
|
[7] |
张海军, 封建湖, 程晓晗. 带源项浅水波方程的高分辨率熵稳定格式[J]. 应用数学和力学, 2018,39(8): 935-945.(ZHANG Haijun, FENG Jianhu, CHENG Xiaohan. An entropy stable scheme for shallow water equations with source terms[J]. Applied Mathematics and Mechanics,2018,39(8): 935-945.(in Chinese))
|
[8] |
HARTEN A, HYMAN J M. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws[J]. Journal of Computational Physics,1983,50(2): 235-269.
|
[9] |
XU X H, NI G X. A high-order moving mesh kinetic scheme based on WENO reconstruction for compressible flows[J]. Journal of Scientific Computing,2013,27(2): 278-299.
|
[10] |
HAN E, LI J, TANG H. An adaptive GRP scheme for compressible fluid flows[J]. Journal of Computational Physics,2010,229(5): 1448-1466.
|
[11] |
CAO W, HUANG W, RUSSELL D. A study of monitor functions for two-dimensional adaptive mesh generation[J]. SIAM Journal on Scientific Computing,1999,20: 1978-1994.
|
[12] |
LI R, TANG T, ZHANG P. Moving mesh methods in multiple dimensions based on harmonic maps[J]. Journal of Computational Physics,2001,170(2): 562-588.
|
[13] |
TANG Z H, TANG T. Adaptive mesh method one- and two-dimensional hyperbolic conservation laws[J]. SIAM Journal on Numerical Analysis,2003,41(2): 487-515.
|
[14] |
杨继明, 陈艳萍. 一类奇异摄动对流扩散边值问题的移动网格方法[J]. 湘潭大学自然科学学报, 2004,26(3): 24-29.(YANG Jiming, CHEN Yanping. A moving mesh method for a class of singularly perturbed convection-diffusion boundary value problems[J]. Journal of Natural Science of Xiangtan University,2004,〖STHZ〗 26(3): 24-29.(in Chinese))
|
[15] |
陈冬冬, 宋松和. 变形法移动网格求解双曲型守恒律方程研究[J]. 计算机技术与发展, 2010,20(2): 1-4.(CHEN Dongdong, SONG Songhe. Research of moving mesh method based on deformation in solving hyperbolic conservation laws[J]. Computer Technology and Development,2010,〖STHZ〗 20(2): 1-4.(in Chinese))
|
[16] |
HE P, TANG H. An adaptive moving mesh method for two-dimensional relativistic hydrodynamics[J]. Communications in Computational Physics,2012,11(1): 114-146.
|
[17] |
程晓晗, 聂玉峰, 蔡力. 基于移动网格的熵稳定格式[J]. 计算物理, 2017,34(2): 175-182.(CHENG Xiaohan, NIE Yufeng, CAI Li. Entropy stable scheme based on moving meshes for hyperbolic conservation laws[J]. Chinese Journal of Computational Physics,2017,34(2): 175-182.(in Chinese))
|
[18] |
BRADFORD S F, SANDERS B F. Finite-volume model for shallow-water flooding of arbitrary topography[J]. Journal of Hydraulic Engineering,2002,128(3): 289-298.
|
[19] |
BRUFAU P, GARCA-NAVARRO M E. Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography[J].International Journal for Numerical Methods in Fluids,2004,45(10): 1047-1082.
|
[20] |
THANH M D, KARIM M F, ISMAIL A I M. Well-balanced scheme for shallow water equations with arbitrary topography[J]. International Journal of Dynamical Systems & Differential Equations,2008,1(3): 196-204.
|
[21] |
GOTTLIEB S, KETCHESON D I, SHU C W. High order strong stability preserving time discretizations[J]. Journal of Scientific Computing,2009,38(3): 251-289.
|
[22] |
朱华君. 二维浅水波方程的高阶有限体积法[D]. 硕士学位论文. 长沙: 国防科学技术大学, 2006.(ZHU Huajun. High-order finite volume method for two-dimensional shallow water wave equation[D]. Master Thesis. Changsha: National University of Defense Technology, 2006.(in Chinese))
|
[23] |
刘刚, 金生. 基于修正Roe格式的有限体积法求解二维浅水方程[J]. 水利水运工程学报, 2009(3): 29-33.(LIU Gang, JIN Sheng. Finite volume model for the 2D shallow water equations using modified Roe scheme[J]. Hydro-Science and Engineering,2009(3): 29-33.(in Chinese))
|
[24] |
潘存鸿. 三角形网格下求解二维浅水方程的和谐Godunov格式[J]. 水科学进展, 2007,18(2): 204-209.(PAN Cunhong. Well-balanced Godunov-type scheme for 2D shallow water flow with triangle mesh[J]. Advances in Water Science,2007,18(2): 204-209.(in Chinese))
|
[25] |
WINTERS A R, GASSNER G J. An entropy stable finite volume scheme for the equations of shallow water magnetohydrodynamics[J]. Journal of Scientific Computing, 2016,67(2): 514-539.
|
[26] |
TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics [M]. Berlin: Springer, 2013.
|
[27] |
王如云. 浅水波数值模拟的Roe平均法[J]. 计算物理, 2000,17(2): 199-203.(WANG Ruyun. Roe mean method for numerical simulation of shallow water waves[J]. Chinese Journal of Computational Physics,2000,17(2): 199-203.(in Chinese))
|
[28] |
AZARENOK B N. Variational method for adaptive mesh generation[J]. Computational Mathematics and Mathematical Physics,2008,〖STHZ〗 48(5): 786-804.
|
[29] |
EELLS J, SAMPSON J H. Harmonic mappings of Riemannian manifolds[J]. American Journal of Mathematics, 1964,86(1): 109-160.
|