[1] |
YANG X M, YANG X Q, CHEN G Y. Theorems of the alternative and optimization with set-valued maps[J]. Journal of Optimization Theory and Applications,2000,107(3): 627-640.
|
[2] |
YANG X M, LI D, WANG S Y. Near-subconvexlikeness in vector optimization with set-valued functions[J]. Journal of Optimization Theory and Applications,2001,110(2): 413-427.
|
[3] |
吴海琴, 刘学文, 罗萍. 集值优化问题广义近似解的线性标量化[J]. 重庆师范大学学报(自然科学版), 2017,34(4): 13-16.(WU Haiqin, LIU Xuewen, LUO Ping. Nonlinear scalarization theorems of generalized approximate solutions in set-valued optimization problems[J]. Journal of Chongqing Normal University(Natural Science),2017,34(4): 13-16.(in Chinese))
|
[4] |
刘学文, 王婷, 汪定国. 向量优化中广义 E -Benson真有效解的性质研究[J]. 重庆师范大学学报(自然科学版), 2018,35(3): 17-20.(LIU Xuewen, WANG Ting, WANG Dingguo. Characterizations of generalized E -Benson proper efficient solutions in vector optimization[J]. Journal of Chongqing Normal University(Natural Science),2018,35(3): 17-20.(in Chinese))
|
[5] |
GERSTEWITZ C H, IWANOW E. Dualitt für nichtkonvexe vektoroptimierungsprobleme[J]. Wissensch Zeitschr Tech,1985,31: 61-81.
|
[6] |
LUC D T. Theory of Vector Optimization [M]. Berlin: Springer, 1989.
|
[7] |
GERTH C, WEIDNER P. Nonconvex separation theorems and some applications in vector optimization[J]. Journal of Optimization Theory and Applications,1990,67(2): 297-320.
|
[8] |
GPFERT A, RIAHI H, TAMMER C, et al. Variational Methods in Partially Ordered Spaces [M]. New York: Springer, 2003.
|
[9] |
CHEN G Y, HUANG X X, YANG X Q. Vector Optimization-Set-Valued and Variational Analysis [M]. Berlin: Springer, 2005.
|
[10] |
JAHN J. Vector Optimization-Theory, Applications and Extensions [M]. 2nd ed. Berlin: Springer, 2011.
|
[11] |
戎卫东, 杨新民. 向量优化及其若干进展[J]. 运筹学学报, 2014,18(1): 9-38.(RONG Weidong, YANG Xinmin. Vector optimization and its developments[J]. Operations Research Transactions,2014,18(1): 9-38.(in Chinese))
|
[12] |
李伟佳, 朱巧, 赵克全. Gerstewitz非线性标量化函数的性质及其在向量优化中的应用[J]. 重庆师范大学学报(自然科学版), 2017,34(5): 1-5.(LI Weijia, ZHU Qiao, ZHAO Kequan. Properties of Gerstewitz nonlinear scalarization function and applications in vector optimization[J]. Journal of Chongqing Normal University(Natural Science),2017,34(5): 1-5.(in Chinese))
|
[13] |
朱巧, 徐威娜, 赵克全. 向量优化中Gerstewitz非线性标量化函数的拟内部性质[J]. 重庆师范大学学报(自然科学版), 2018,35(1): 11-14.(ZHU Qiao, XU Weina, ZHAO Kequan. Properties of Gerstewitz nonlinear scalarization function via quasi interiors in vector optimization[J]. Journal of Chongqing Normal University(Natural Science),2018,35(1): 11-14.(in Chinese))
|
[14] |
ZHAO K Q, ZHU Q, WANG D G. Nonconvex separation theorems via assumption B and applications in vector optimization[J]. Journal of Chongqing Normal University(Natural Science),2018,〖STHZ〗 35(3): 1-8.
|
[15] |
YU P L. Multiple-Criteria Decision Making: Concepts, Techniques and Extensions [M]. New York: Plenum Press, 1985.
|
[16] |
EICHFELDER G. Variable Ordering Structures in Vector Optimization [M]. Berlin: Springer, 2014.
|
[17] |
CHEN G Y, YANG X Q. Characterizations of variable domination structures via nonlinear scalarization[J]. Journal of Optimization Theory and Applications,2002,112(1): 97-110.
|
[18] |
CHEN G Y, YANG X Q, YU H. A nonlinear scalarization function and generalized quasi-vector equilibrium problems[J]. Journal of Global Optimization,2005,32(4): 451-466.
|
[19] |
FARAJZADEH A, LEE B S, PLUBTEING S. On generalized quasi-vector equilibrium problems via scalarization method[J]. Journal of Optimization Theory and Applications,2015,168(2): 1-16.
|
[20] |
邵重阳, 彭再云, 王泾晶, 等. 参数广义弱向量拟平衡问题解映射的H-连续性刻画[J]. 应用数学和力学, 2019,40(4): 452-462.(SHAO Chongyang, PENG Zaiyun, WANG Jingjing, et al. Characterizations of H-continuity for solution mapping to parametric generalized weak vector quasi-equilibrium problems[J]. Applied Mathematics and Mechanics,2019,40(4): 452-462.(in Chinese))
|
[21] |
LUC D T, RA ?瘙 塃 IU A. Vector optimization: basic concepts and solution methods[M]//AL-MEZEL S A R, AL-SOLAMY F R M, ANSARI Q H, ed.Fixed Point Theory, Variational Analysis and Optimization . Boca Raton: CRC Press, Taylor & Francis Group, 2014.
|