LUO Z Q, PANG J S, RALPH D.Mathematical Programs With Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996.
|
[2]HUANG X X, YANG X Q, ZHU D L. Levitin-Polyak well-posedness of variational inequality problems with functional constraints[J].Journal of Global Optimization,2009,44(2): 159-174.
|
[3]LIGNOLA M B, MORGAN J.α-well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints[J].Journal of Global Optimization,2006,36(3): 439-459.
|
[4]GONG X H. Continuity of the solution set to parametric weak vector equilibrium problems[J].Journal of Optimization Theory and Applications,2008,139(1): 35-46.
|
[5]PENG Z Y, YANG X M. Painlevé-Kuratowski convergences of the solution sets for perturbed vector equilibrium problems without monotonicity[J].Acta Mathematicae Applicatae Sinica(English Series),2014,30(4): 845-858.
|
[6]PENG Z Y, WANG Z Y, YANG X M. Connectedness of solution sets for weak generalized symmetric Ky Fan inequality problems via addition-invariant sets[J].Journal of Optimization Theory and Applications,2020,185(1): 188-206.
|
[7]MISHRA S K, JAISWAL M, LE THI H A. Nonsmooth semi-infinite programming problem using limiting subdifferentials[J].Journal of Global Optimization,2012,53(2): 285-296.
|
[8]CHEN G Y, CRAVEN B D. Existence and continuity of solutions for vector optimization[J].Journal of Optimization Theory and Applications,1994,81(3): 459-468.
|
[9]PENG Z Y, WANG X F, YANG X M. Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems[J].Set-Valued and Variational Analysis,2019,27(1): 103-118.
|
[10]邵重阳, 彭再云, 王泾晶, 等. 参数广义弱向量拟平衡问题解映射的H-连续性刻画[J]. 应用数学和力学, 2019,40(4): 452-462.(SHAO Chongyang, PENG Zaiyun, WANG Jingjing, et al. Characterizations of H-continuity for solution mapping to parametric generalized weak vector quasi-equilibrium problems[J].Applied Mathematics and Mechanics,2019,40(4): 452-462.(in Chinese))
|
[11]CHUONG T D, HUY N Q, YAO J C. Stability of semi-infinite vector optimization problems under functional perturbations[J].Journal of Global Optimization,2009,45(4): 583-595.
|
[12]FAN X, CHENG C, WANG H. Stability of semi-infinite vector optimization problems without compact constraints[J].Nonlinear Analysis: Theory, Methods & Applications,2011,74(6): 2087-2093.
|
[13]ZHAO Y, PENG Z Y, YANG X M. Painlevé-Kuratowski convergences of the solution sets for perturbed generalized systems[J].Journal of Nonlinear and Convex Analysis,2014,15(6): 1249-1259.
|
[14]彭再云, 熊勤, 王泾晶, 等. 近似平衡约束向量优化问题解集的上Painlevé-Kuratowski收敛性[J]. 系统科学与数学, 2018,38(8): 960-970.(PENG Zaiyun, XIONG Qin, WANG Jingjing, et al. On upper Painlevé-Kuratowski convergence of the solutions set to vector optimization problems under approximate equilibrium constraints[J].Journal of Systems Science and Mathematical Sciences,2018,38(8): 960-970.(in Chinese))
|
[15]PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J].Journal of Global Optimization,2018,70(1): 55-69.
|
[16]邵重阳, 彭再云, 刘芙萍, 等. 改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性[J]. 应用数学和力学, 2020,41(8): 912-920.(SHAO Chongyang, PENG Zaiyun, LIU Fuping, et al. Berge lower semi-continuity of parametric generalized vector quasi-equilibrium problems under improvement set mappings[J].Applied Mathematics and Mechanics,2020,41(8): 912-920.(in Chinese))
|
[17]WANG J J, SHAO C Y, PENG Z Y. Stability and scalarization for perturbed set-valued optimization problems with constraints via general ordering sets[J].Pacific Journal of Optimization,2019,15(4): 529-549.
|
[18]LUC D T.Theory of Vector Optimization[M]. Berlin: Springer-Verlag, 1989.
|
[19]AUBIN J P, EKELAND I.Applied Nonlinear Analysis[M]. New York: John Wiley and Sons, 1984.
|
[20]BERGE C.Topological Spaces[M]. London: Oliver and Boyd, 1963.
|
[21]ROCKAFELLAR R T, WETS R J B.Variational Analysis[M]. Berlin: Springer Science & Business Media, 2009.
|
[22]OPPEZZI P, ROSSI A M. A convergence for vector valued functions[J].Optimization,2008,57(3): 435-448.
|