[1] |
MENKES S B, OPAT H J. Tearing and shear failures in explosively loaded broken beams[J]. Explosion Mechanics,1973,13: 480-486.
|
[2] |
TEELING-SMITH R G, NURICK G N. The deformation and tearing of thin circular plates subjected to impulsive loads[J]. International Journal of Impact Engineering,1991,11(1): 77-91.
|
[3] |
NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads: an experimental study[J]. International Journal of Impact Engineering,1996,18(1): 99-116.
|
[4] |
LEE Y W, WIERZBICKI T. Fracture prediction of thin plates under localized impulsive loading, part Ⅰ: dishing[J]. International Journal of Impact Engineering,2005,31(10): 1253-1276.
|
[5] |
YOUNG-WOONG L, WIERZBICKI T. Fracture prediction of thin plates under localized impulsive loading, part II: discing and petalling[J].International Journal of Impact Engineering,2005,31(10):1277-1308.
|
[6] |
MARCHAND A, DUFFY J. An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the Mechanics and Physics of Solids ,1988,36(3): 251-283.
|
[7] |
ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates, Ⅰ: experimental investigations of temperature signatures and propagation speed[J]. Journal of the Mechanics and Physics of Solids ,1996,44(6): 981-1006.
|
[8] |
GUDURU P R, RAVICHANDRAN G, ROSAKIS A J. Observations of transient high temperature vortical microstructures in solids during adiabatic shear banding[J]. Physical Review E,2001,64(3): 036128.
|
[9] |
NESTERENKO V F, MEYERS M A, WRIGHT T W. Self-organization in the initiation of adiabatic shear bands[J]. Acta Materialia,1998,46(1): 327-340.
|
[10] |
XUE Q, MEYERS M A, NESTERENKO V F. Self organization of shear bands in stainless steel[J]. Materials Science and Engineering: A,2004,384(1): 35-46.
|
[11] |
LOVINGER Z, RIKANATI A, ROSENBERG Z, et al. Electromagnetic collapse of thick-walled cylinders to investigate spontaneous shear localization[J]. International Journal of Impact Engineering,2011,38(11): 918-929.
|
[12] |
KALTHOFF J F. Failure methodology of mode-Ⅱ loaded cracks[C]. International Conference on Complexity and Frontiers in Strength and Fracture . Sendai, Japan, 2001.
|
[13] |
FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids,1998,46(8): 1319-1342.
|
[14] |
AMBROSIO L, TORTORELLI V M. Approximation of functional depending on jumps by elliptic functional via Γ-convergence[J]. Communications on Pure and Applied Mathematics,1990,43(8): 999-1036.
|
[15] |
BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids,2000,48(4): 797-826.
|
[16] |
MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering,2010,83(10): 1273-1311.
|
[17] |
MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(45/48): 2765-2778.
|
[18] |
LARSEN C J. Models for dynamic fracture based on Griffith’s criterion[C]// IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials . Dordrecht, 2010: 131-140.
|
[19] |
LARSEN C J, ORTNER C, SLI E. Existence of solutions to a regularized model of dynamic fracture[J]. Mathematical Models and Methods in Applied Science s, 2010,20(7): 1021-1048.
|
[20] |
BOURDIN B, LARSEN C J, RICHARDSON C L. A time-discrete model for dynamic fracture based on crack regularization[J]. International Journal of Fracture,2011,168(2): 133-143.
|
[21] |
BORDEN M J, VERHOOSEL C V, SCOTT M A, et al. A phase-field description of dynamic brittle fracture[J]. Computer Methods in Applied Mechanics and Engineering,2012,217: 77-95.
|
[22] |
HOFACKER M, MIEHE C. A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns[J]. International Journal for Numerical Methods in Engineering,2013,93(3): 276-301.
|
[23] |
AMBATI M, GERASIMOV T, DE LORENZIS L. Phase-field modeling of ductile fracture[J]. Computational Mechanics,2015,55(5): 1017-1040.
|
[24] |
AMBATI M, KRUSE R, DE LORENZIS L. A phase-field model for ductile fracture at finite strains and its experimental verification[J]. Computational Mechanics,2016,57(1): 149-167.
|
[25] |
MIEHE C, HOFACKER M, SCHNZEL L M, et al. Phase field modeling of fracture in multi-physics problems, part Ⅱ: Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[J]. Computer Methods in Applied Mechanics and Engineering,2015,294: 486-522.
|
[26] |
MIEHE C, ALDAKHEEL F, RAINA A. Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory[J]. International Journal of Plasticity,2016,84: 1-32.
|
[27] |
MCAULIFFE C, WAISMAN H. A unified model for metal failure capturing shear banding and fracture[J]. International Journal of Plasticity,2015,65: 131-151.
|
[28] |
BORDEN M J, HUGHES T J R, LANDIS C M, et al. A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxialityeffects[J]. Computer Methods in Applied Mechanics and Engineering,2016,312: 130-166.
|
[29] |
WANG T, YE X, LIU Z L, et al. A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration[J]. Computational Mechanics,2020,65: 1305-1321.
|
[30] |
CHU D Y, LI X, LIU Z L, et al. A unified phase field damage model for modeling the brittle-ductile dynamic failure mode transition in metals[J]. Engineering Fracture Mechanics,2019,212: 197-209.
|
[31] |
WANG T, LIU Z L, CUI Y N, et al. A thermo-elastic-plastic phase-field model for simulating the evolution and transition of adiabatic shear band, part I: Theory and model calibration[J]. Engineering Fracture Mechanics,2020,232: 107028. DOI: 10.1016/j.engfracmech.2020.107028.
|