Block-Sparse Signal Recovery via l2/lq(q=2/3) Minimization
-
摘要:
该文主要研究了块稀疏信号的恢复问题.利用q块限制等距性质(0<q≤1),通过极小化混合l2/lq(q=2/3)范数,建立了块稀疏信号恢复的一个充分条件,并且得到了在有噪声情形下信号恢复的误差界.通过数值实验,验证了该模型对于块稀疏信号的恢复有较高的成功率.
-
关键词:
- 压缩感知 /
- 块稀疏恢复 /
- 混合l2/lq(q=2/3)范数
Abstract:The recovery of block-sparse signals was mainly studied. By means of the block restricted q-isometry property (block q-RIP) with 0<q≤1, a sufficient condition for block-sparse signal recovery was established through mixed l2/lq(q=2/3) norm minimization with q=2/3,and an error bound for signal recovery in the presence of noise was obtained. Through numerical experiments, it is verified that the model has a high success rate for block-sparse signal recovery.
-
HALDAR J, HERNANDO D, LIANG Z. Compressed-sensing MRI with random encoding[J].IEEE Transactions on Medical Imaging,2011,30(4): 893-903. [2]CANDES E J, TAO T. Decoding by linear programming[J].IEEE Transactions on Information Theory,2005, 51(12): 4203-4215. [3]PARVARESH F, VIKALO H, MISRA S, et al. Recovering sparse signals using sparse measurement matrices in compressed DNA microarrays[J].IEEE Journal of Selected Topics in Signal Processing,2008,2(3): 275-285. [4]MAIUMDAR A, WARD R. Compressed sensing of color images[J].Signal Processing,2010,90(12): 3122-3127. [5]VIDAL R, MA Y. A unified algebraic approach to 2-D and 3-D motion segmentation and estimation[J].Journal of Mathematical Imaging and Vision,2006, 25(3): 403-421. [6]LIN J, LI S. Block sparse recovery via mixed l2/l1 minimization[J].Acta Mathematica Sinica,2013,29(7): 1401-1412. [7]CHEN W, LI Y. The high order block RIP condition for signal recovery[J].Journal of Computational Mathematics,2019,37(1): 61-75. [8]HUANG J, WANG J, WANG W, et al. Sharp sufficient condition of block signal recovery via l2/l1-minimization[J].IET Signal Processing,2017,13(5): 495-505. [9]WANG Y, WANG J, XU Z. Restrictedp-isometry properties of nonconvex block-sparse compressed sensing[J].Signal Processing,2014,104: 188-196. [10]STOJNIC M, PARVARESH F, HASSIBI B. On the reconstruction of block-sparse signals with an optimal number of measurements[J].IEEE Transactions on Signal Processing,2009,57(8): 3075-3085. [11]ELDAR Y C, KUPPINGER P, BOLCSKEI H. Block-sparse signals: uncertainty relations and efficient recovery[J].IEEE Transactions on Signal Processing,2010,58(6): 3042-3054. [12]ELDAR Y C, MISHALI M. Robust recovery of signals from a structured union of subspaces[J].IEEE Transactions on Information Theory,2009,55(11): 5302-5316. [13]ZHOU S, KONG L, LUO Z, et al. New RIC bounds via lq-minimization with 0 [14]DAVIES M E, GRIBONVAL R. Restricted isometry constants where lp sparse recovery can fail for 0 [15]FOUCART S. A note on guaranteed sparse recovery via lp-minimization[J].Applied and Computational Harmonic Analysis,2010, 29(1): 97-103. [16]赵丹, 孙祥凯. 非凸多目标优化模型的一类鲁棒逼近最优性条件[J]. 应用数学和力学, 2019,40(6): 694-700.(ZHAO Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J].Applied Mathematics and Mechanics,2019,40(6): 694-700.(in Chinese)) [17]王欣, 郭科. 一类非凸优化问题广义交替方向法的收敛性[J]. 应用数学和力学, 2018,39(12): 1410-1425.(WANG Xin, GUO Ke. Convergence of the generalized alternating direction method of multipliers for a class of nonconvex optimization problems[J].Applied Mathematics and Mechanics,2018,39(12): 1410-1425.(in Chinese)) [18]DONOHO D L. Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4): 1289-1306. [19]CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006, 52(2): 489-509. [20]CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted l1 minimization[J].Journal of Fourier Analysis and Applications,2008,14(5): 877-905. [21]NIE F P, WANG H, HUANG H, et al. Joint Schattenp-norm and lp-norm robust matrix completion for missing value recovery[J].Knowledge and Information Systems,2015,42(3): 525-544. [22]NIE F P, HUANG H, DING C. Low-rank matrix recovery via efficient Schattenp-norm minimization[C]//Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012: 655-661. [23]CAO W F, SUN J, XU Z B. Fast image deconvolution using closed-form thresholding formulas of Lq(q=1/2, 2/3) regularization[J].Journal of Visual Communication and Image Representation,2013, 24(1): 31-41. [24]ZHANG Y, YE W Z. L2/3 regularization: convergence of iterative thresholding algorithm[J].Journal of Visual Communication and Image Representation,2015,33: 350-357. [25]WANG Z, GAO C, LUO X H, et al. Accelerated inexact matrix completion algorithm via closed-formq-thresholding (q=1/2,2/3) operator[J].International Journal of Machine Learning and Cybernetics,2020,11: 2327-2339. [26]LAI M, LIU L. A new estimate of restricted isometry constants for sparse solutions[J].Applied and Computational Harmonic Analysis,2011,30(3): 402-406. [27]CHARTRAND R, STANEVA V. Restricted isometry properties and nonconvex compressive sensing[J].Inverse Problems,2010, 24(3): 657-682. [28]HE S, WANG Y, WANG J, et al. Block-sparse compressed sensing with partially known signal support via non-convex minimization[J].IET Signal Processing,2016,10(7): 717-723. [29]BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J].Foundations Trends in Machine Learning,2011,3(1): 1-122. -
计量
- 文章访问数: 889
- HTML全文浏览量: 213
- PDF下载量: 38
- 被引次数: 0