全国煤化工信息总站. 2002年—2018年中国能源生产、消费结构[J]. 煤化工, 2020,48(3): 85.(National Coal Chemical Industry Information Station. China energy production and consumption structure from 2002to 2018[J].Coal Chemical Industry,2020,48(3): 85.(in Chinese))
|
[2]徐倩. 新形势下中国石油储备现状及未来规划[J]. 化工管理, 2018(25): 16-17.(XU Qian. The present situation and future planning of China petroleum reserves under the new situation[J].Chemical Enterprise Management,2018(25): 16-17.(in Chinese))
|
[3]方圆, 张万益, 马芬. 全球页岩油资源分布与开发现状[J]. 矿产保护与利用, 2019,39(5): 126-134.(FANG Yuan, ZHANG Wanyi, MA Fen. Research on the global distribution and development status of shale oil[J].Conservation and Utilization of Mineral Resources,2019,39(5): 126-134.(in Chinese))
|
[4]高诚, 孙川翔, 苏建政. 国际油页岩开发技术现状及新疆开采可行性分析[J]. 地球科学前沿, 2017,7(3): 330-335.(GAO Cheng, SUN Chuanxiang, SU Jianzheng. Global oil shale development technology and its application analysis in Xinjiang, China[J].Advances in Geosciences,2017,7(3): 330-335.(in Chinese))
|
[5]杜金虎, 刘合, 马德胜, 等. 试论中国陆相致密油有效开发技术[J]. 石油勘探与开发, 2014,41(2): 198-205.(DU Jinhu, LIU He, MA Desheng, et al. Discussion on effective development techniques for continental tight oil in China[J].Petroleum Exploration & Development,2014,41(2): 198-205.(in Chinese))
|
[6]张映红, 路保平, 陈作. 中国陆相致密油开采技术发展策略思考[J]. 石油钻探技术, 2015,43(1): 1-6.(ZHANG Yinghong, LU Baoping, CHEN Zuo. Thinking on development strategy of continental tight oil production technology in China[J].Petroleum Drilling Technology,2015,43(1): 1-6.(in Chinese))
|
[7]严翔. 对油页岩勘探现状的评价分析[J]. 智能城市, 2019,5(14): 84-85.(YAN Xiang. Evaluation and analysis of the present situation of oil shale exploration[J].Intelligent City,2019,5(14): 84-85.(in Chinese))
|
[8]丁述基. 达西及达西定律[J]. 水文地质工程地质, 1986(3): 33-35.(DING Shuji. Darcy and Darcy’s law[J].Hydrogeology and Engineering Geology,1986(3): 33-35.(in Chinese))
|
[9]赵永富, 田恩龙, 张国栋. 达西定律与渗流控制[J]. 黑龙江水利科技, 2008,36(4): 65.(ZHAO Yongfu, TIAN Enlong, ZHANG Guodong. Darcy’s law and seepage control[J].Heilongjiang Science and Technology of Water Conservancy,2008,36(4): 65.(in Chinese))
|
[10]牛玉龙, 王媛, 于可, 等. 裂隙网络非达西渗流REV及非达西系数张量研究[J]. 水利学报, 2020,51(4): 468-478.(NIU Yulong, WANG Yuan, YU Ke, et al. Non-Darcy seepage REV and non-Darcy coefficient tensor in fracture network[J].Journal of Hydraulic Engineering,2020,51(4): 468-478.(in Chinese))
|
[11]王高峰, 雷友忠, 谭俊领, 等. 低渗透油藏气驱注采比和注气量设计[J]. 油气地质与采收率, 2020,27(1):134-139.(WANG Gaofeng, LEI Youzhong, TAN Junling, et al. Design of injection-production ratio and gas injection rate of gas flooding in low-permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1): 134-139.(in Chinese))
|
[12]袁银春, 李闽, 王颖, 等. 致密砂岩低流速下的达西流动[J]. 新疆石油地质, 2020,41(3): 349-354.(YUAN Yinchun, LI Min, WANG Ying, et al. Darcy flow in tight sandstone at low velocity[J].Xinjiang Petroleum Geology,2020,41(3): 349-354.(in Chinese))
|
[13]HUBBERT M K. Energy from fossil fuels[J].Science,1949,109(2823): 103-109.
|
[14]HUBBERT M K. The energy resources of the earth[J].Scientific American,1971,225(3): 60-70.
|
[15]WENG W B.Theory of Forecasting[M]. Beijing: International Academic Publishers, 1991.
|
[16]陈劲松, 年静波, 韩洪宝. 改进Arps递减模型早期产量预测再认识[J]. 非常规油气, 2019,6(1): 75-80.(CHEN Jinsong, NIAN Jingbo, HAN Hongbao. Improve production prediction rationality of the modified Arps decline model in the early shale oil and gas wells[J].Unconventional Oil and Gas,2019,6(1): 75-80.(in Chinese))
|
[17]REBERTSON S. Generalized hyperbolic equation: SPE-18731-MS[R]. Society of Petroleum Engineers, 1988.
|
[18]DILHAN I. Exponential vs hyperbolic decline in tight gas sands understanding the origin and implication for reserve estimates using Arps decline curves[C]//SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA, 2008: SPE-116731-MS.
|
[19]DUONG A N. An unconventional rate decline approach for tight and fracture-dominated gas wells[C]//Canadian Unconventional Resources and International Petroleum Conference. Calgary, Alberta, Canada, 2011: SPE-137748-MS.
|
[20]陈海虹, 黄彪, 刘峰, 等. 机器学习原理及应用[M]. 成都: 电子科技大学出版社, 2017.(CHEN Haihong, HUANG Biao, LIU Feng, et al.Principle and Application of Machine Learning[M]. Chengdu: University of Electronic Science and Technology Press, 2017.(in Chinese))
|
[21]ZEILER M D, KRISHNAN D, TATLOR G W, et al. Deconvolutional networks[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA, 2010.
|
[22]AHRIMANKOSH M, KASIRI N, MOUSAVI S M. Improved permeability prediction of a heterogeneous carbonate reservoir using artificial neural networks based on the flow zone index approach[J].Petroleum Science and Technology,2011,29(23): 2494-2506.
|
[23]KHANAL A, KHOSHGHADAM M, LEE W J. New forecasting method for liquid rich shale gas condensate reservoirs with data driven approach using principal component analysis[J].Journal of Natural Gas Science and Engineering,2017,38: 621-637.
|
[24]CAO Q, BANERJEE R, GUPTA S. Data driven production forecasting using machine learning[C]//SPE Argentina Exploration and Production of Unconventional Resources Symposium. Buenos Aires, Argentina, 2016: SPE 180984-MS.
|
[25]郭长杰, 王浩翔, 刘晓,等. 浅析机器学习技术在油气行业的应用场景[J]. 信息系统工程, 2017(5): 100-103.(GUO Changjie, WANG Haoxiang, LIU Xiao, et al. Analysis of the application scenarios of machine learning technique in the oil and gas industry[J].Information System Engineering,2017(5): 100-103.(in Chinese))
|
[26]马林茂, 李德富, 郭海湘. 基于遗传算法优化BP神经网络在原油产量预测中的应用:以大庆油田BED试验区为例[J]. 数学的实践与认识, 2015,45(24): 117-128.(MA Linmao, LI Defu, GUO Haixiang. BP neural network based on genetic algorithm applied in crude oil production forecast: taking the BED test area of the Daqing oilfield as an example[J].Mathematics in Practice and Theory,2015,45(24): 117-128.(in Chinese))
|
[27]檀朝东, BANGERT P, 刘柏良, 等. 人工神经网络自学习方法在大港滩海油田的应用[J]. 中国石油和化工, 2010(11): 46-47.(TAN Chaodong, BANGERT P, LIU Boliang, et al. Application of self-learning method of artificial neural network in Dagang Beach oilfield[J].China Petroleum and Chemical Industry,2010(11): 46-47.(in Chinese))
|
[28]DAVID E R, GEOFFREY E H, RONALD J W. Learning representations by back-propagating errors[J].Nature,1986,323: 533-536.
|
[29]袁冰清, 程功, 郑柳刚. BP神经网络基本原理[J]. 数字通信世界, 2018(8): 28-29.(YUAN Bingqing, CHENG Gong, ZHENG Liugang. Basic principle of BP neural network[J].Digital Communication World,2018(8): 28-29.(in Chinese))
|
[30]周志祥, 韩逢庆. 一种基于训练数据的迭代改进核函数[J]. 应用数学和力学, 2009,30(1): 120-126.(ZHOU Zhixiang, HAN Fengqing. An iterative improved kernel function based on training data[J].Applied Mathematics and Mechanics,2009,30(1): 120-126.(in Chinese))
|
[31]佟秀秀, 康志宏. 基于多元线性回归和BP神经网络的单井能力预测[J]. 科学技术与工程, 2019,19(29): 96-102.(TONG Xiuxiu, KANG Zhihong. Single well capacity prediction based on multiple linear regression and back propagation neural network[J].Science Technology and Engineering,2019,19(29): 96-102.(in Chinese))
|
[32]ELMAN J L. Finding structure in time[J].Cognitive Science,1990,149(2): 179-211.
|
[33]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J].Neural Compute,1997,9(8): 1735.
|
[34]张巧灵, 高淑萍, 何迪. 基于时间序列的混合神经网络数据融合算法[J]. 应用数学和力学, 2021,42(1): 12-16.(ZHANG Qiaoling, GAO Shuping, HE Di. A hybrid neural network data fusion algorithm based on time series[J].Applied Mathematics and Mechanics,2021,42(1):12-16.(in Chinese))
|
[35]陈劲松, 曹健志, 韩洪宝. 页岩油气井常用产量预测模型适应性分析[J]. 非常规油气, 2019,6(3): 48-57.(CHEN Jinsong, CAO Jianzhi, HAN Hongbao. Adaptability analysis of common production prediction models for shale oil and gas wells[J].Unconventional Oil and Gas,2019,6(3): 48-57.(in Chinese))
|
[36]翁文波. 预测论基础[M]. 北京: 石油工业出版社, 1984.(WENG Wenbo.Fundamentals of Prediction Theory[M]. Beijing: Petroleum Industry Press, 1984.(in Chinese))
|
[37]王昕, 程希明. 石油产量预测的麦克斯韦模型[J]. 岩性油气藏, 2019,31(6): 155-160.(WANG Xin, CHENG Ximing. Maxwell model for oil production prediction[J].Lithologic Reservoir,2019,31(6): 155-160.(in Chinese))
|
[38]李彦尊, 白玉湖, 陈桂华. 基于人工神经网络方法的页岩油气产量预测新技术: 以美国Eagle Ford页岩油气田为例[J]. 中国海上油气, 2020,32(4): 104-110.(LI Yanzun, BAI Yuhu, CHEN Guihua. ANN method based on novel technology for production prediction of shale oil and gas: a case study in Eagle Ford[J].China Offshore Oil and Gas,2020,32(4): 104-110.(in Chinese))
|
[39]李世臻, 刘卫彬, 王丹丹, 等. 中美陆相页岩油地质条件对比[J]. 地质论评, 2017,63(S1): 39-40.(LI Shizhen, LIU Weibin, WANG Dandan, et al. Comparison of geological conditions of continental shale oil between China and the United States[J].Geological Review,2017,63(S1): 39-40.(in Chinese))
|
[40]祝彦贺. 北美某盆地Z区块页岩油气产量的影响因素[J]. 海洋地质前沿, 2013,29(8): 33-38, 52.(ZHU Yanhe. Study of geologic parameters controlling production difference in Z block of a basin in North America[J].Marine Geology Frontier,2013,29(8): 33-38, 52.(in Chinese))
|
[41]王民, 石蕾, 王文广, 等. 中美页岩油、致密油发育的地球化学特征对比[J]. 岩性油气藏, 2014,26(3): 67-73.(WANG Min, SHI Lei, WANG Wenguang, et al. Comparative study on geochemical characteristics of shale oil between China and USA[J].Lithologic Reservoirs,2014,26(3): 67-73.(in Chinese))
|
[42]白国平, 邱海华, 邓舟舟. 美国页岩油资源分布特征与主控因素研究[J]. 石油实验地质, 2020,42(4): 524-532.(BAI Guoping, QIU Haihua, DENG Zhouzhou. Distribution and main controls for shale oil resources in USA[J].Petroleum Geology and Experiment,2020,42(4): 524-532.(in Chinese))
|