Propagation Dynamics of a Discrete SIS Model With Time Periodicity
-
摘要:
该文研究了一类具有时间周期的空间离散多种群SIS模型的传播力学。首先,借助周期单调半流的传播速度与行波理论,证明了渐近传播速度c*的存在性。其次,利用比较原理,证得了渐近传播速度即为单调周期行波解的最小波速。
Abstract:The propagation dynamics was studied for a class of spatially discrete multi-type SIS epidemic model with time periodicity. Firstly, the theory of spreading speeds and travelling waves for monotonic periodic semiflows was applied to prove the existence of asymptotic spreading speed c*. Secondly, by means of the comparison principle, the asymptotic spreading speed was proved to coincide with the minimal wave speed of monotonic periodic traveling waves.
-
[1] DIEKMANN O. Thresholds and travelling waves for the geographical spread of infection[J]. Journal of Mathematical Biology, 1978, 6(2): 109-130. [2] WEINBERGER H F. Long-time behavior of a class of biological models[J]. SIAM Journal on Mathematical Analysis, 1982, 13(3): 353-396. [3] WANG H, WANG X S. Traveling wave phenomena in a Kermack-McKendrick SIR model[J]. Journal of Dynamics and Differential Equations, 2016, 28(1): 143-166. [4] RASS L, RADCLIFFE J. Spatial Deterministic Epidemics[M]//Mathematical Surveys and Monographs, Vol 102. American Mathematical Society, 2003. [5] WENG P, ZHAO X Q. Spreading speed and traveling waves for a multi-type SIS epidemic model[J]. Journal of Differential Equations, 2006, 229(1): 270-296. [6] ZHANG K F, ZHAO X Q. Spreading speed and travelling waves for a spatially discrete SIS epidemic model[J]. Journal of Differential Equations, 2007, 21(1): 97-112. [7] WU S L, LI P, CAO H. Dynamics of a nonlocal multi-type SIS epidemic model with seasonality[J]. Journal of Mathematical Analysis and Applications, 2018, 463(1): 111-133. [8] 张笑嫣. 一类具有非线性发生率与时滞的离散扩散SIR模型临界行波解的存在性[J]. 应用数学和力学, 2021, 42(12): 1317-1326ZHANG Xiaoyan. Existence of critical traveling wave solutions for a class of discrete diffusion SIR models with nonlinear incidence and time delay[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1317-1326.(in Chinese) [9] 郑景盼. 三物种竞争-扩散系统双稳行波解的波速符号[J]. 应用数学和力学, 2021, 42(12): 1296-1305ZHENG Jingpan. The wave speed signs for bistable traveling wave solutions in 3-species competition-diffusion systems[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1296-1305.(in Chinese) [10] CHEN X, GUO J S. Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations[J]. Journal of Differential Equations, 2002, 184(2): 549-569. [11] CHEN X, GUO J S. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics[J]. Mathematische Annalen, 2003, 326(1): 123-146. [12] MA S W, ZOU X F. Propagation and its failure in a lattice delayed differential equation with global interaction[J]. Journal of Differential Equations, 2005, 212(1): 129-190. [13] WU C C. Existence of traveling waves with the critical speed for a discrete diffusive epidemic model[J]. Journal of Differential Equations, 2017, 262(1): 272-282. [14] CHEN Y Y, GUU J S, HAMEL F. Traveling waves for a lattice dynamical system arising in a diffusive endemic model[J]. Nonlinearity, 2016, 30(6): 2334-2359. [15] FU S C, GUO J S, WU C C. Traveling wave solutions for a discrete diffusive epidemic model[J]. Journal of Nonlinear Science, 2016, 31(10): 1739-1751. [16] SMITH H L. Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems[M]//Mathematical Surveys and Monographs, Vol 41. American Mathematical Society, 1995. [17] LIANG X, YI Y, ZHAO X Q. Spreading speeds and traveling waves for periodic evolution systems[J]. Journal of Differential Equations, 2006, 231(1): 57-77. [18] ZHANG F, ZHAO X Q. A periodic epidemic model in a patchy environment[J]. Journal of Mathematical Analysis and Applications, 2007, 325(1): 496-516. [19] LIANG X, ZHAO X Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[J]. Communications on Pure and Applied Mathematics: a Journal Issued by the Courant Institute of Mathematical Sciences, 2007, 60(1): 1-40. -
计量
- 文章访问数: 751
- HTML全文浏览量: 319
- PDF下载量: 68
- 被引次数: 0