留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VOF-LPT模型的强旋来流条件横向射流破碎雾化特征研究

谢名云 濮天昊 刘洪 吴胜奇

谢名云, 濮天昊, 刘洪, 吴胜奇. 基于VOF-LPT模型的强旋来流条件横向射流破碎雾化特征研究[J]. 应用数学和力学, 2023, 44(9): 1054-1069. doi: 10.21656/1000-0887.440110
引用本文: 谢名云, 濮天昊, 刘洪, 吴胜奇. 基于VOF-LPT模型的强旋来流条件横向射流破碎雾化特征研究[J]. 应用数学和力学, 2023, 44(9): 1054-1069. doi: 10.21656/1000-0887.440110
XIE Mingyun, PU Tianhao, LIU Hong, WU Shengqi. Breakup and Atomization Characteristics of Liquid Jets in Strong Swirling Crossflow Based on the VOF-LPT Method[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1054-1069. doi: 10.21656/1000-0887.440110
Citation: XIE Mingyun, PU Tianhao, LIU Hong, WU Shengqi. Breakup and Atomization Characteristics of Liquid Jets in Strong Swirling Crossflow Based on the VOF-LPT Method[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1054-1069. doi: 10.21656/1000-0887.440110

基于VOF-LPT模型的强旋来流条件横向射流破碎雾化特征研究

doi: 10.21656/1000-0887.440110
基金项目: 

国家自然科学基金重大研究计划项目 91941301

上海市自然科学基金项目 22ZR1433700

四川省自然科学基金项目 2022NSFSC1893

详细信息
    作者简介:

    谢名云(1998—),男,博士生(E-mail: 2016sege@sjtu.edu.cn)

    通讯作者:

    吴胜奇(1986—),男,副教授,博士(通讯作者. E-mail: shengqiwu@sjtu.edu.cn)

  • 中图分类号: O358

Breakup and Atomization Characteristics of Liquid Jets in Strong Swirling Crossflow Based on the VOF-LPT Method

  • 摘要: 研究强旋来流条件横向液体射流的破碎雾化特征对先进航发燃烧室设计具有重要意义. 该文采用Euler-Lagrange方法模拟了射流破碎雾化过程,基于VOF(volume of fluid)方法捕获了近场射流破碎过程中相界面的拓扑结构变化,通过Lagrange粒子追踪(LPT)方法模化喷雾液滴的动力学过程得到远场油雾分布特征. 该研究构建了不同旋流强度横向来流,旋流数从0变化至2.5,射流与气流的动量比q为10,来流We数为39. 在该工况下,射流破碎过程包含柱状破碎和表面破碎. 结果表明,由Kelvin-Helmholtz(KH)不稳定诱导的轴向波的发展是射流发生柱状破碎的主要原因,而射流分支/液膜从液柱表面剥离形成了射流的表面破碎,其主要由方位剪切不稳定波主导. 强旋流加速了射流的柱状破碎过程,降低了破碎位置的径向高度,但旋流延迟了射流的表面破碎过程,破碎开始位置的径向高度随旋流数增大而升高. 随着旋流数的增大,流向方向速度分量不断减小,射流沿径向方向的喷注轨迹显著升高;射流的偏转角度与流向位置呈线性关系,旋流数越大偏转斜率越大. 此外,射流雾化场的Sauter直径(SMD)随旋流数的增加而减小,液雾场的空间分布区域也随旋流数的增加而增大.
  • 图  1  旋流射流相互作用计算模型

    Figure  1.  Illustration of the computation setup for the swirl-jet interaction

    图  2  旋流数为0的迎风面喷注轨迹结果与实验结果比较

    Figure  2.  Comparison of the windward trajectory with the experimental results for Ns=0

    图  3  旋流数为0时液滴粒径随径向高度变化以及与实验结果的比较

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Droplet sizes varying with the radial height compared with the experimental results for Ns=0

    图  4  旋流与射流相互作用喷雾结构

    Figure  4.  The spray structure of the interaction between swirls and jets

    图  5  不同旋流数条件下破碎开始位置以及破碎位置的径向高度

    Figure  5.  Radial heights of the breakup onset and the breakup location for different swirl numbers

    图  6  旋流与射流相互作用喷雾结构三视图(a)—(c)及射流近场破碎结构(d)

    Figure  6.  Three views of spray structures (a)—(c) and the near-field break-up structure of swirling jet interaction (d)

    图  7  Case 0—case 3射流近场时间演化结果

    Figure  7.  Time resolved near-field liquid jets in case 0—case 3

    图  8  柱坐标系下case 1的喷注轨迹与喷雾平均场结果

    Figure  8.  The injection trajectory and the spray mean field results of case 1 in the cylindrical coordinates

    图  9  不同旋流数下喷注轨迹比较

    Figure  9.  Comparison of injection trajectories under different swirling numbers

    图  10  不同旋流数下偏转角度结果

    Figure  10.  Deflection angle results under different swirling numbers

    图  11  Case 0—case 3在x/d=10处平面液滴空间分布

    Figure  11.  Spatial distributions of planar droplets at x/d=10 in case 0—case 3

    图  12  Case 1不同轴向距离平面液滴空间分布

    Figure  12.  Spatial distributions of planar droplets with different axial distances in case 1

    图  13  不同算例液滴粒径PDF

    Figure  13.  Droplet size PDF in different cases

    A1  Case 2的xOz平面(a)和xOr平面(b)喷雾平均结果比较

    A1.  Average sprays of xOz plane(a) and xOr plane(b) in case 2

    A2  Case 2有无坐标变化得到的喷注轨迹比较

    A2.  Comparison of the trajectories for the xOz plane and the xOr palne

    A3  柱坐标系下case 1的xOθ平面偏转角度提取与喷雾平均场结果

    A3.  Average spray results along the xOθ plane and the deflection angle extraction in case 1

    表  1  射流液体以及来流气体物理性质

    Table  1.   Liquid and gas properties

    parameter value
    gas density ρg/(kg/m3) 1.25
    gas viscosity μg/(m2/s) 1.46E-5
    liquid density ρl/(kg/m3) 997
    liquid viscosity μl/(m2/s) 1.01E-6
    surface tension coefficient σ/(N/m) 0.071
    下载: 导出CSV

    表  2  不同旋流数下空气来流与射流的工况设置

    Table  2.   Numerical setups for different swirling numbers

    cases Ns Ug/(m/s) u/(m/s) v/(m/s) Ul/(m/s)
    case 0 0 74 74.00 0.00 8.29
    case 1 0.5 74 68.62 27.71 8.29
    case 2 1 74 57.57 46.50 8.29
    case 3 2.5 74 32.84 66.31 8.29
    下载: 导出CSV

    表  3  不同旋流度下射流SMD结果

    Table  3.   Jet SMD results under different swirling numbers

    cases Ns dSMD/μm
    case 0 0 60.80
    case 1 0.5 52.66
    case 2 1 48.94
    case 3 2.5 48.15
    下载: 导出CSV

    表  4  不同位置截面射流SMD结果

    Table  4.   Jet SMD results at different cross sections

    cases x/d=10 x/d=20 x/d=30 x/d=40 dSMD
    case 0 55.21 60.75 64.91 59.34 60.80
    case 1 49.02 55.26 54.94 51.75 52.66
    case 2 49.29 49.06 49.49 46.06 48.94
    case 3 50.03 47.94 46.56 45.03 48.15
    下载: 导出CSV
  • [1] URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. doi: 10.1146/annurev-fluid-122316-045217
    [2] 林宇震, 李林, 张弛, 等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报, 2014, 35(1): 46-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201401004.htm

    LIN Yuzhen, LI Lin, ZHANG Chi, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 46-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201401004.htm
    [3] JENNY P, ROEKAERTS D, BEISHUIZEN N. Modeling of turbulent dilute spray combustion[J]. Progress in Energy and Combustion Science, 2012, 38(6): 846-887. doi: 10.1016/j.pecs.2012.07.001
    [4] XIAO F, DIANAT M, MCGUIRK J J. Large eddy simulation of liquid-jet primary breakup in air crossflow[J]. AIAA Journal, 2013, 51(12): 2878-2893. doi: 10.2514/1.J052509
    [5] HERRMANN M, ARIENTI M, SOTERIOU M. The impact of density ratio on the liquid core dynamics of a turbulent liquid jet injected into a crossflow[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(6): 061501-061510. doi: 10.1115/1.4002273
    [6] 袁朝华. 非均匀横向气流场中的射流雾化现象研究[D]. 硕士学位论文. 天津: 中国民航大学, 2018.

    YUAN Chaohua. Study on jet breakup in non-uniform air crossflow field[D]. Master Thesis. Tianjin: Civil Aviation University of China, 2018. (in Chinese)
    [7] WU P K, KIRKENDALL K A, FULLER R P, et al. Breakup processes of liquid jets in subsonic crossflows[J]. Journal of Propulsion and Power, 1997, 13(1): 64-73. doi: 10.2514/2.5151
    [8] FAETH G M. Liquid atomization in multiphase flows: a review[C]// 30th Fluid Dynamics Conference. Norfolk, VA, 1999.
    [9] 刘静, 徐旭. 高速气流中横向液体射流雾化研究进展[J]. 力学进展, 2009, 39(3) : 273-283.

    LIU Jing, XU Xu. The research development of liquid jet atomization in high speed crossflow[J]. Advances in Mechanics, 2009, 39(3): 273-283. (in Chinese)
    [10] SALLAM K A, AALBURG C, FAETH G M. Breakup of round nonturbulent liquid jets in gaseous crossflow[J]. AIAA Journal, 2004, 42(12): 2529-2540. doi: 10.2514/1.3749
    [11] BEHZAD M, ASHGRIZ N, MASHAYEK A. Azimuthal shear instability of a liquid jet injected into a gaseous cross-flow[J]. Journal of Fluid Mechanics, 2015, 767: 146-172. doi: 10.1017/jfm.2015.36
    [12] BROUMAND M, BIROUK M. Liquid jet in a subsonic gaseous crossflow: recent progress and remaining challenges[J]. Progress in Energy and Combustion Science, 2016, 57: 1-29. doi: 10.1016/j.pecs.2016.08.003
    [13] BECKER J, HASSA C. Liquid fuel placement and mixing of generic aeroengine premix module at different operating conditions[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(4): 901-908. doi: 10.1115/1.1587741
    [14] FREITAG S. Experimental investigations of fuel preparation in a swirling airflow under realistic conditions without reaction in a combustor model with a point fuel source[J]. CEAS Aeronautical Journal, 2018, 9(3): 475-490. doi: 10.1007/s13272-018-0295-2
    [15] SIKRORIA T, KUSHARI A, SYED S, et al. Experimental investigation of liquid jet breakup in a cross flow of a swirling air stream[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(6): 061501. doi: 10.1115/1.4026244
    [16] TAMBE S B, JENG S M. A study of liquid jets injected transversely into a swirling cross flow[C]//Proceedings of ILASS Americas, 21st Annual Conference on Liquid Atomization and Spray Systems. Orlando, FL, 2008.
    [17] MASUDA B J, MCDONELL V G, OSKAM G W. Mixing of a plain jet into a swirling crossflow[C]//Proceedings of ILASS Americas, 21st Annual Conference on Liquid Atomization and Spray Systems. Orlando, FL, 2008.
    [18] PATIL S, SAHU S. Air swirl effect on spray characteristics and droplet dispersion in a twin-jet crossflow airblast injector[J]. Physics of Fluids, 2021, 33(7): 073314. doi: 10.1063/5.0054430
    [19] PRAKASH S R, JAIN S S, LOVETT J A, et al. Detailed numerical simulations of atomization of a liquid jet in a swirling gas crossflow[J]. Atomization and Sprays, 2019, 29(5): 1-17.
    [20] JIN T, WANG G, ZOU J, et al. Multiscale simulation of liquid jet breakup in swirling crossflows: breakup mechanism and spray structures[J]. SSRN Electronic Journal, 2022. DOI: 10.2139/ssrn.4092611.
    [21] XIAO H, GOLLNER M J, ORAN E S. From fire whirls to blue whirls and combustion with reduced pollution[J]. Proceedings of the National Academy of Sciences, 2016, 113(34): 9457-9462. doi: 10.1073/pnas.1605860113
    [22] HEINRICH M, SCHWARZE R. 3D-coupling of volume-of-fluid and Lagrangian particle tracking for spray atomization simulation in OpenFOAM[J]. SoftwareX, 2020, 11: 100483. doi: 10.1016/j.softx.2020.100483
    [23] TANGIRALA V, CHEN R H, DRISCOLL J F. Effect of heat release and swirl on the recirculation within swirl-stabilized flames[J]. Combustion Science and Technology, 1987, 51(1/3): 75-95.
    [24] BEHZAD M, ASHGRIZ N, KARNEY B W. Surface breakup of a non-turbulent liquid jet injected into a high pressure gaseous crossflow[J]. International Journal of Multiphase Flow, 2016, 80: 100-117. doi: 10.1016/j.ijmultiphaseflow.2015.11.007
    [25] SHINJO J, UMEMURA A. Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation[J]. International Journal of Multiphase Flow, 2010, 36(7): 513-532. doi: 10.1016/j.ijmultiphaseflow.2010.03.008
    [26] XIE M, WU S, YU B, et al. Numerical investigation of the bifurcating behavior of liquid jets in crossflow[C]//Proceedings of ILASS Asia 22nd Annual Conference on Liquid Atomization and Spray Systems. 2022.
    [27] GOPALA Y, ZHANG P, BIBIK O, et al. Liquid fuel jet in crossflow-trajectory correlations based on the column breakup point[C]// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, 2010.
    [28] MARMOTTANT P, VILLERMAUX E. On spray formation[J]. Journal of Fluid Mechanics, 2004, 498: 73-111. doi: 10.1017/S0022112003006529
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  170
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-08-17
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回