留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

井壁破裂与内部应变状态机理分析

胡锐 贾晓芬 赵佰亭 兰世豪 李德权

胡锐, 贾晓芬, 赵佰亭, 兰世豪, 李德权. 井壁破裂与内部应变状态机理分析[J]. 应用数学和力学, 2023, 44(12): 1463-1472. doi: 10.21656/1000-0887.440171
引用本文: 胡锐, 贾晓芬, 赵佰亭, 兰世豪, 李德权. 井壁破裂与内部应变状态机理分析[J]. 应用数学和力学, 2023, 44(12): 1463-1472. doi: 10.21656/1000-0887.440171
HU Rui, JIA Xiaofen, ZHAO Baiting, LAN Shihao, LI Dequan. Mechanism Analysis of Wellbore Fracture and Internal Strain State[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1463-1472. doi: 10.21656/1000-0887.440171
Citation: HU Rui, JIA Xiaofen, ZHAO Baiting, LAN Shihao, LI Dequan. Mechanism Analysis of Wellbore Fracture and Internal Strain State[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1463-1472. doi: 10.21656/1000-0887.440171

井壁破裂与内部应变状态机理分析

doi: 10.21656/1000-0887.440171
基金项目: 

安徽省自然科学基金(面上项目) 2108085ME158

国家自然科学基金(面上项目) 52174141

安徽高校协同创新项目 GXXT-2020-54

详细信息
    通讯作者:

    胡锐(1995—), 男, 助理实验师, 硕士(通讯作者. E-mail: hurui810@163.com)

  • 中图分类号: TD262

Mechanism Analysis of Wellbore Fracture and Internal Strain State

  • 摘要: 为研究立井井壁破裂与内部应变之间的相互规律,搭建井壁实物模型以模拟井壁受力破裂过程和状态,利用分布式光纤技术对井壁内部应变进行监测,并分别从应力和应变多角度进行深入分析. 结果表明:对于应变状态,当施加应力增大,井壁应变程度也随之增大,应变极大值所对应的井壁位置,其应变程度在范围内达到最大,破裂风险也就最高;对于应力作用,不同应力下井壁应变最大值与最小值之间的偏差度越大,井壁稳定性越差,越容易发生破裂;分析了应力、应变二者相互关联性,拟合各方向角所对应的井壁位置应变变化的线性方程,变化率数值越大,井壁应变增长速度就越快,当应变值超过所能承受极限时,井壁会更容易发生破裂;通过对井壁应变数据监测,分析了应变差值、偏差度和应变变化率,结合Lamé公式,建立了井壁应变破裂关系模型,为井壁破裂预警提供了新方案.
  • 图  1  井壁应变3D仿真模型

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The 3D simulation model for wellbore strain

    图  2  水平地压对井壁作用模拟示意图

    Figure  2.  Schematic diagram for simulation of horizontal ground pressure effect on the wellbore

    图  3  井壁结构受力模拟实验

    Figure  3.  The stress simulation experiment of the shaft wall structure

    图  4  井壁应变数据

    Figure  4.  The shaftwall strain data chart

    图  5  井壁应变差值

    Figure  5.  Shaft wall strain difference values

    图  6  井壁应变数值分析

    Figure  6.  Numerical analysis of shaft wall strains

    图  7  线性拟合应变变化率直方图

    Figure  7.  Linear fitting of the strain change rate histogram

    图  8  井壁90°,209.45°方向角线性空间图

    Figure  8.  Linear space diagram of the well wall 90°, 209.45° directional angle fitting

    图  9  井壁90°,209.45°应变数据

    Figure  9.  Strain data of the shaft wall at 90° and 209.45°

    表  1  不同应力下井壁应变偏差度

    Table  1.   Deviations of borehole wall strains under different stresses

    P/MPa 1 2 3 4 5 6 7
    δx(max) 2.553 6×10-4 2.253 1×10-4 1.061 6×10-4 7.42×10-6 -1.089×10-5 -3.253×10-5 -4.239×10-5
    δx(min) -4.583×10-5 -4.544×10-5 -8.865×10-5 -1.305 1×10-4 -2.446 5×10-4 -3.452 4×10-4 -4.264 5×10-4
    $\exists_x$ 3.011 9×10-4 2.707 5×10-4 1.948 1×10-4 1.379 3×10-4 2.337 6×10-4 3.127 1×10-4 3.840 5×10-4
    P/MPa 8 9 10 11 12 13
    δx(max) -4.507×10-5 -3.610×10-5 -4.158×10-5 -5.517×10-5 -7.366×10-5 -8.918×10-5
    δx(min) -5.098 6×10-4 -6.172 1×10-4 -7.186 2×10-4 -8.252 4×10-4 -9.562 5×10-4 -1.078 45×10-3
    $\exists_x$ 4.647 9×10-4 5.811 1×10-4 6.770 4×10-4 7.700 7×10-4 8.825 9×10-4 9.892 8×10-4
    下载: 导出CSV
  • [1] 孙利辉, 杨本生, 杨万斌, 等. 深部巷道连续双壳加固机理及试验研究[J]. 采矿与安全工程学报, 2013, 30(5): 686-691.

    SUN Lihui, YANG Bensheng, YANG Wanbin, et al. Reinforcement mechanism and experimental study on continuous double shell of deep roadway[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 686-691. (in Chinese)
    [2] 王太元, 王侃. 光纤光栅技术在井壁融化期间变形监测中的应用[J]. 煤矿安全, 2016, 47(11): 162-164.

    WANG Taiyuan, WANG Kan. Application of fiber bragg grating technology in deformation monitoring of shaft wall melting stage[J]. Safety in Coal Mines, 2016, 47(11): 162-164. (in Chinese)
    [3] 刘金龙, 陈陆望, 王吉利. 立井井壁温度应力特征分析[J]. 岩土力学, 2011, 32(8): 2386-2390. doi: 10.3969/j.issn.1000-7598.2011.08.023

    LIU Jinlong, CHEN Luwang, WANG Jili. Characteristic analysis of temperature stresses of shaft wall[J]. Rock and Soil Mechanics, 2011, 32(8): 2386-2390. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.08.023
    [4] 刘启国, 徐有杰, 刘义成, 等. 夹角断层多段压裂水平井试井求解新方法[J]. 应用数学和力学, 2018, 39(5): 558-567. doi: 10.21656/1000-0887.380297

    LIU Qiguo, XU Youjie, LIU Yicheng, et al. A new well test analysis method for multi-stage fractured horizontal wells with angle faults[J]. Applied Mathematics and Mechanics, 2018, 39(5): 558-567. (in Chinese) doi: 10.21656/1000-0887.380297
    [5] 王华宁, 郭振宇, 高翔, 等. 含水合物地层井壁力学状态的弹塑性解析分析[J]. 同济大学学报(自然科学版), 2020, 48(12): 1696-1706.

    WANG Huaning, GUO Zhenyu, GAO Xiang, et al. Elastoplastic analytical investigation of mechanical response of wellbore in methane hydrate-bearing sediments[J]. Journal of Tongji University (Natural Science), 2020, 48(12): 1696-1706. (in Chinese)
    [6] AMADEI B. Rock Anisotropy and the Theory of Stress Measurements[M]. BREBBIA C, ORSZAG S. Lecture Notes in Engineering, Vol 2. Berlin: Springer-Verlag, 1983: 87-116.
    [7] 古泼塔D, 塞门M. 包括各向异性效应在内的地球介质中井孔的稳定性[J]. 应用数学和力学, 1999, 20(8): 783-802. doi: 10.3321/j.issn:1000-0887.1999.08.003

    GUPTA D, ZAMAN M. Stability of boreholes in a geologic medium including the effects of anisotropy[J]. Applied Mathematics and Mechanics, 1999, 20(8): 783-802. (in Chinese) doi: 10.3321/j.issn:1000-0887.1999.08.003
    [8] 刘志强, 王飞, 郭强. 深厚表土层井壁破裂机理及防治技术研究进展[J]. 煤炭科学技术, 2011, 39(4): 6-10.

    LIU Zhiqiang, WANG Fei, GUO Qiang. Research progress on mine shaft liner breaking mechanism and prevention technologies in deep and thick overburden[J]. Coal Science and Technology, 2011, 39(4): 6-10. (in Chinese)
    [9] 张卫东, 常龙, 高佳佳. 横观各向同性地层井壁应力分析[J]. 工程力学, 2015, 32(11): 243-250. doi: 10.6052/j.issn.1000-4750.2014.04.0348

    ZHANG Weidong, CHANG Long, GAO Jiajia. Stress analysis at the borehole wall in transverse isotropic formations[J]. Engineering Mechanics, 2015, 32(11): 243-250. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0348
    [10] 宋朝阳, 纪洪广, 孙利辉. 高地应力深立井井筒围岩应力演化与变形规律及支护分析[J]. 煤炭工程, 2016, 48(10): 45-48. doi: 10.11799/ce201610015

    SONG Chaoyang, JI Hongguang, SUN Lihui. Evolution-deformation law and support of surrounding rock in deep vertical shaft under high ground stress[J]. Coal Engineering, 2016, 48(10): 45-48. (in Chinese) doi: 10.11799/ce201610015
    [11] 张明明, 梁利喜, 刘向君. 页岩储层各向异性对水平井坍塌压力的影响[J]. 应用数学和力学, 2017, 38(3): 295-309. doi: 10.21656/1000-0887.370155

    ZHANG Mingming, LIANG Lixi, LIU Xiangjun. Impacts of rock anisotropy on horizontal wellbore stability in shale reservoir[J]. Applied mathematics and Mechanics, 2017, 38(3): 295-309. (in Chinese) doi: 10.21656/1000-0887.370155
    [12] 管华栋, 周晓敏, 徐衍, 等. 冻结立井井壁早期温度应力计算研究[J]. 金属矿山, 2018, 503(5): 44-47.

    GUAN Huadong, ZHOU Xiaomin, XU Yan, et al. Calculation of the early thermal stress in freezing vertical shaft lining[J]. Metal Mine, 2018, 503(5): 44-47. (in Chinese)
    [13] MA T S, LIU Y, CHEN P, et al. Fractureinitiation pressure analysis of horizontal well in anisotropic formations[J]. International Journal of Oil, Gas and Coal Technology, 2019, 22(4): 447-469. doi: 10.1504/IJOGCT.2019.103508
    [14] 杨仁树, 王千星. 非均匀荷载下斜井井壁应力和位移场弹性分析[J]. 煤炭学报, 2020, 45(11): 3726-3734.

    YANG Renshu, WANG Qianxing. Elastic analysis of full stress and displacement field for inclined shaftliner subjected to non-uniform stresses[J]. Journal of China Coal Society, 2020, 45(11): 3726-3734. (in Chinese)
    [15] 吕有厂, 何志强, 王英伟, 等. 超千米深部矿井采动应力显现规律[J]. 煤炭学报, 2019, 44(5): 1326-1336.

    LV Youchang, HE Zhiqiang, WANG Yingwei, et al. Mining-induced mechanics behavior in the deep mine with an over-kilometer depth[J]. Journal of China Coal Society, 2019, 44(5): 1326-1336. (in Chinese)
    [16] 乔立瑾. 立井井筒破坏原因及修复方案设计[J]. 煤炭工程, 2022, 54(8): 6-11.

    QIAO Lijin. Cause for vertical shaft wall failure and the repair scheme design[J]. Coal Engineering, 2022, 54(8): 6-11. (in Chinese)
    [17] 乔宏霞, 乔国斌, 路承功. 硫酸盐环境下基于COMSOL混凝土损伤劣化模型[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 119-125.

    QIAO Hongxia, QIAO Guobin, LU Chenggong. Damage and deterioration model of concrete based on COMSOL in sulfate environment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(3): 119-125. (in Chinese)
    [18] 侯晓萍, 樊恒辉. 基于COMSOL Multiphysics的非饱和裂隙土降雨入渗特性研究[J]. 岩土力学, 2022, 43(2): 563-572.

    HOU Xiaoping, FAN Henghui. Study on rainfall infiltration characteristics of unsaturated fractured soil based on COMSOL Multiphysics[J]. Rock and Soil Mechanics, 2022, 43(2): 563-572. (in Chinese)
    [19] 朱磊, 柴敬, 陈娜. 基于光纤光栅技术的井筒变形监测[J]. 煤矿安全, 2017, 48(3): 140-143.

    ZHU Lei, CHAI Jing, CHEN Na. Shaft deformation monitoring based on fiber bragg grating[J]. Safety in Coal Mines, 2017, 48(3): 140-143. (in Chinese)
    [20] 王正帅, 柴敬, 黄旭超, 等. 采场覆岩变形分布式光纤测量研究[J]. 煤炭科学技术, 2017, 45(10): 196-202.

    WANG Zhengshuai, CHAI Jing, HUANG Xuchao, et al. Research on overlying strata deformation based on distributed optical fiber sensing measure[J]. Coal Science and Technology, 2017, 45(10): 196-202. (in Chinese)
    [21] 王德发, 李琪, 叶菁, 等. 气体测量中的线性拟合[J]. 计量科学与技术, 2022, 66(10): 3-9.

    WANG Defa, LI Qi, YE Jing, et al. Linear fitting in gas measurement[J]. Metrology Science and Technology, 2022, 66(10): 3-9. (in Chinese)
    [22] 汪伟, 罗周全, 秦亚光, 等. 深部开采初始地应力场非线性反演新方法[J]. 中南大学学报(自然科学版), 2017, 48(3): 804-812.

    WANG Wei, LUO Zhouquan, QIN Yaguang, et al. A new nonlinear inversion method of geostress field in deep mining[J]. Journal of Central South University (Science and Technology), 2017, 48(3): 804-812. (in Chinese)
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  41
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-10-23
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回