留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法

杨震霆 王雅静 聂雪阳 徐新生 周震寰

杨震霆, 王雅静, 聂雪阳, 徐新生, 周震寰. 含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法[J]. 应用数学和力学, 2024, 45(2): 144-154. doi: 10.21656/1000-0887.440247
引用本文: 杨震霆, 王雅静, 聂雪阳, 徐新生, 周震寰. 含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法[J]. 应用数学和力学, 2024, 45(2): 144-154. doi: 10.21656/1000-0887.440247
YANG Zhenting, WANG Yajing, NIE Xueyang, XU Xinsheng, ZHOU Zhenhuan. Symplectic Isogeometric Analysis Coupling Method for Interfacial Fracture of Piezoelectric Quasicrystal Composites With Notches[J]. Applied Mathematics and Mechanics, 2024, 45(2): 144-154. doi: 10.21656/1000-0887.440247
Citation: YANG Zhenting, WANG Yajing, NIE Xueyang, XU Xinsheng, ZHOU Zhenhuan. Symplectic Isogeometric Analysis Coupling Method for Interfacial Fracture of Piezoelectric Quasicrystal Composites With Notches[J]. Applied Mathematics and Mechanics, 2024, 45(2): 144-154. doi: 10.21656/1000-0887.440247

含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法

doi: 10.21656/1000-0887.440247
基金项目: 

辽宁省自然科学基金 2023-MS-118

详细信息
    作者简介:

    杨震霆(1994—),男,博士生(E-mail: zhentingyang@outlook.com)

    通讯作者:

    周震寰(1983—),男,教授,博士(通讯作者. E-mail: zhouzh@dlut.edu.cn)

  • 中图分类号: O346

Symplectic Isogeometric Analysis Coupling Method for Interfacial Fracture of Piezoelectric Quasicrystal Composites With Notches

  • 摘要: 发展了一种适用于含有切口的压电准晶/压电晶体/弹性体三材料组合结构界面断裂问题的高精度的半数值半解析方法.首先,通过引入Hamilton体系建立了三材料组合结构的Hamilton对偶方程,将原问题在传统Lagrange体系下的高阶偏微分控制方程转化为低阶常微分方程组.其次,通过分离变量法求解问题对应的辛本征值和本征解,将各物理场变量利用辛级数展开形式表示.最后,将辛级数与等几何分析方法相结合,获得了辛-等几何耦合列式,直接求得切口尖端附近奇异物理场及其强度因子的解析表达式.
  • 图  1  含切口的三材料组合结构

    Figure  1.  The 3-material composite with a notch

    图  2  奇异区和非奇异区

    Figure  2.  The singular region and the non-singular region

    图  3  含内部裂纹的压电准晶体

    Figure  3.  The square PQC with an internal crack

    图  4  应力强度因子随模型尺寸的变化

    Figure  4.  The variations of the stress intensity factor vs. the size of the model

    图  5  圆形压电晶体/环氧树脂双材料结构

    Figure  5.  The circular PZC/epoxy bi-material

    图  6  材料参数对应力、电位移强度因子的影响

    Figure  6.  The effects of the material constants on the stress and electric displacement intensity factors

    图  7  含边切口的方形压电准晶体/压电晶体/环氧树脂模型

    Figure  7.  The square PQC/PZC/epoxy composite models

    表  1  压电准晶体/压电晶体/弹性体材料参数

    Table  1.   The material constants of PQC/PZC/elastic materials

    C44/GPa R3/GPa K2/GPa e15/(C/m2) d15/(C/m2) λ11/(C2/(N·m2))
    PQC 50 1.2 0.18 -0.138 -0.16 8.26×10-11
    PZC 25.6 - - 12.7 - 6.46
    epoxy 1.76 - - - - -
    下载: 导出CSV

    表  2  情况1时切口奇异性指数随角度Δθ的变化

    Table  2.   The variations of the singularity orders vs. Δθ in case 1

    Δθ
    50° 60° 70° 80° 90°
    μ1-1 -0.209 8 -0.243 8 -0.275 9 -0.306 0 -0.334 5
    μ2-1 -0.013 2 -0.018 8 -0.028 0 -0.046 2 -0.083 7
    下载: 导出CSV

    表  3  情况2时切口奇异性指数随角度Δθ的变化

    Table  3.   The variations of the singularity orders vs. Δθ in case 2

    Δθ
    50° 60° 70° 80° 90°
    μ1-1 -0.476 8 -0.481 0 -0.484 2 -0.486 7 -0.488 7
    μ2-1 -0.240 0 -0.273 6 -0.304 1 -0.332 5 -0.358 0
    下载: 导出CSV

    表  4  情况3时切口奇异性指数随角度Δθ的变化

    Table  4.   The variations of the singularity orders vs. Δθ in case 3

    Δθ
    50° 60° 70° 80° 90°
    μ1-1 -0.838 9 -0.852 8 -0.863 6 -0.872 4 -0.879 7
    下载: 导出CSV

    表  5  界面1强度系数(情况1)

    Table  5.   The intensity coefficients at interface 1 (case 1)

    a
    1 2 3 4 5
    K1σ 0.949 0 1.042 3 1.058 4 1.049 7 1.023 7
    K1D 0.011 0 0.012 0 0.012 2 0.012 1 0.011 8
    K1H 0 0 0 0 0
    K2σ -0.021 3 -0.021 5 -0.021 6 -0.021 6 -0.021 6
    K2D 0.010 9 0.011 0 0.011 0 0.011 0 0.011 0
    K2H 0 0 0 0 0
    下载: 导出CSV

    表  6  界面2强度系数(情况1)

    Table  6.   The intensity coefficients at interface 2 (case 1)

    a
    1 2 3 4 5
    K1σ 0.051 2 0.056 3 0.057 1 0.056 7 0.055 3
    K1D 0 0 0 0 0
    K2σ 0.000 9 0.000 9 0.000 9 0.000 9 0.000 9
    K2D 0 0 0 0 0
    下载: 导出CSV

    表  7  界面1强度系数(情况2)

    Table  7.   The intensity coefficients at interface 1 (case 2)

    a
    1 2 3 4 5
    K1σ -0.014 5 -0.014 4 -0.014 0 -0.012 8 -0.009 9
    K1D 0.007 9 0.007 8 0.007 6 0.007 0 0.005 4
    K1H 0 0 0 0 0
    K2σ 0.932 9 1.028 9 1.044 1 1.031 7 0.994 9
    K2D 0.011 7 0.012 9 0.013 1 0.013 0 0.012 5
    K2H 0 0 0 0 0
    下载: 导出CSV

    表  8  界面2强度系数(情况2)

    Table  8.   The intensity coefficients at interface 2 (case 2)

    a
    1 2 3 4 5
    K1σ 0.000 4 0.000 4 0.000 4 0.000 4 0.000 3
    K1D 0 0 0 0 0
    K1H 0 0 0 0 0
    K2σ 0.048 9 0.053 9 0.054 7 0.054 1 0.052 1
    K2D 0 0 0 0 0
    K2H 0 0 0 0 0
    下载: 导出CSV

    表  9  界面1强度系数(情况3)

    Table  9.   The intensity coefficients at interface 1 (case 3)

    a
    1 2 3 4 5
    K1σ 0.058 0 0.075 1 0.076 0 0.073 6 0.073 6
    K1D 0 0 0 0 0
    K1H 0 0 0 0 0
    下载: 导出CSV

    表  10  界面2强度系数(情况3)

    Table  10.   The intensity coefficients at interface 2 (case 3)

    a
    1 2 3 4 5
    K1σ 0.058 3 0.075 4 0.076 4 0.074 0 0.074 0
    K1D 0 0 0 0 0
    下载: 导出CSV
  • [1] DING D H, YANG W G, HU C Z, et al. Generalized elasticity theory of quasi-crystals[J]. Physical Review B, 1993, 48(10): 7003-7010. doi: 10.1103/PhysRevB.48.7003
    [2] LI X F, FAN T Y, SUN Y F. A decagonal quasicrystal with a Griffith crack[J]. Philosophical Magazine A, 1999, 79(8): 1943-1952. doi: 10.1080/01418619908210401
    [3] FAN T Y, MAI Y W. Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials[J]. Applied Mechanics Reviews, 2004, 57(5): 325-343. doi: 10.1115/1.1763591
    [4] GUO J H, YU J, XING Y M. Anti-plane analysis on a finite crack in a one-dimensional hexagonal quasicrystal strip[J]. Mechanics Research Communications, 2013, 52: 40-45. doi: 10.1016/j.mechrescom.2013.06.005
    [5] LI L H, LIU G T. Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow[J]. Chinese Physics B, 2014, 23(5): 056101. doi: 10.1088/1674-1056/23/5/056101
    [6] 苏梦雨, 肖俊华, 冯国益. 一维六方准晶中纳米尺度开裂孔洞的Ⅲ型断裂力学[J]. 固体力学学报, 2020, 41(3): 281-292. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202003011.htm

    SU Mengyu, XIAO Junhua, FENG Guoyi. Type Ⅲ fracture mechanics of a nanoscale cracked hole in one-dimensional hexagonal quasicrystal[J]. Chinese Journal of Solid Mechanics, 2020, 41(3): 281-292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202003011.htm
    [7] 范天佑. 准晶数学弹性力学和缺陷力学[J]. 力学进展, 2000, 30(2): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200002000.htm

    FAN Tianyou. Mathematical theory of elasticity and defects of quasicrystals[J]. Advances in Mechanics, 2000, 30(2): 161-174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200002000.htm
    [8] GAO Y, RICOEUR A, ZHANG L L, et al. Crack solutions and weight functions for plane problems in three-dimensional quasicrystals[J]. Archive of Applied Mechanics, 2014, 84(8): 1103-1115. doi: 10.1007/s00419-014-0868-4
    [9] WANG X, SCHIAVONE P. Elastic field for a blunt crack in a decagonal quasicrystalline material[J]. Engineering Fracture Mechanics, 2019, 220: 106657. doi: 10.1016/j.engfracmech.2019.106657
    [10] HU K, YANG W, FU J, et al. Analysis of an anti-plane crack in a one-dimensional orthorhombic quasicrystal strip[J]. Mathematics and Mechanics of Solids, 2022, 27(11): 2467-2479. doi: 10.1177/10812865211073814
    [11] LI L H, LIU G T. Decagonal quasicrystal plate with elliptic holes subjected to out-of-plane bending moments[J]. Physics Letters A, 2014, 378(10): 839-844. doi: 10.1016/j.physleta.2014.01.024
    [12] 张炳彩, 丁生虎, 张来萍. 一维六方准晶双材料中圆孔边共线界面裂纹的反平面问题[J]. 应用数学和力学, 2022, 43(6): 639-647. doi: 10.21656/1000-0887.420202

    ZHANG Bingcai, DING Shenghu, ZHANG Laiping. The anti-plane problem of collinear interface cracks emanating from a circular hole in 1D hexagonal quasicrystal bi-materials[J]. Applied Mathematics and Mechanics, 2022, 43(6): 639-647. (in Chinese) doi: 10.21656/1000-0887.420202
    [13] 卢绍楠, 赵雪芬, 马园园. 一维六方压电准晶双材料界面共线裂纹问题[J]. 应用数学和力学, 2023, 44(7): 809-824. doi: 10.21656/1000-0887.430111

    LU Shaonan, ZHAO Xuefen, MA Yuanyuan. Research on interfacial collinear cracks between 1D hexagonal piezoelectric quasicrystal bimaterials[J]. Applied Mathematics and Mechanics, 2023, 44(7): 809-824. (in Chinese) doi: 10.21656/1000-0887.430111
    [14] JIANG L J, LIU G T. The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Physics B, 2017, 26(4): 044601. doi: 10.1088/1674-1056/26/4/044601
    [15] LI Y D, BAO R, CHEN W. Axial shear fracture of a transversely isotropic piezoelectric quasicrystal cylinder: which field (phonon or phason) has more contribution?[J]. European Journal of Mechanics A: Solids, 2018, 71: 179-186. doi: 10.1016/j.euromechsol.2018.03.019
    [16] ZHOU Y B, LI X F. Fracture analysis of an infinite 1D hexagonal piezoelectric quasicrystal plate with a penny-shaped dielectric crack[J]. European Journal of Mechanics A: Solids, 2019, 76: 224-234. doi: 10.1016/j.euromechsol.2019.04.011
    [17] ZHAO M, DANG H, FAN C, et al. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 1: theoretical solution[J]. Engineering Fracture Mechanics, 2017, 179: 59-78. doi: 10.1016/j.engfracmech.2017.04.019
    [18] DANG H, ZHAO M, FAN C, et al. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 2: numerical method[J]. Engineering Fracture Mechanics, 2017, 180: 268-281. doi: 10.1016/j.engfracmech.2017.05.042
    [19] HU K, GAO C, ZHONG Z, et al. Interaction of collinear interface cracks between dissimilar one-dimensional hexagonal piezoelectric quasicrystals[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 2021, 101(11): e202000360. doi: 10.1002/zamm.202000360
    [20] HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39): 4135-4195.
    [21] 姚伟岸, 钟万勰. 辛弹性力学[M]. 北京: 高等教育出版社, 2002.

    YAO Weian, ZHONG Wanxie. Symplectic Elasticity[M]. Beijing: Higher Education Press, 2002. (in Chinese)
    [22] XU C H, ZHOU Z H, XU X S, et al. Electroelastic singularities and intensity factors for an interface crack in piezoelectric-elastic bimaterials[J]. Applied Mathematical Modelling, 2015, 39(9): 2721-2739. doi: 10.1016/j.apm.2014.10.061
    [23] ZHOU Z, YANG Z, XU W, et al. Evaluation of electroelastic singularity of finite-size V-notched one-dimensional hexagonal quasicrystalline bimaterials with piezoelectric effect[J]. Theoretical and Applied Fracture Mechanics, 2019, 100: 139-153.
    [24] WU Y F, CHEN W Q, LI X Y. Indentation on one-dimensional hexagonal quasicrystals: general theory and complete exact solutions[J]. Philosophical Magazine, 2013, 93(8): 858-882. doi: 10.1080/14786435.2012.735772
    [25] LI X Y, LI P D, WU T H, et al. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect[J]. Physics Letters A, 2014, 378(10): 826-834. doi: 10.1016/j.physleta.2014.01.016
    [26] YANG J, LI X. Analytic solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects[J]. Theoretical and Applied Fracture Mechanics, 2016, 82: 17-24.
    [27] CHEN C D, CHUE C H. Singular electro-mechanical fields near the apex of a piezoelectric bonded wedge under antiplane shear[J]. International Journal of Solids and Structures, 2003, 40(23): 6513-6526.
  • 加载中
图(7) / 表(10)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  42
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 修回日期:  2023-10-12
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回