留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及时变演化特征的硅泡沫垫层非线性黏弹性模型研究

范志庚 万强 牛红攀 靳凡

范志庚, 万强, 牛红攀, 靳凡. 计及时变演化特征的硅泡沫垫层非线性黏弹性模型研究[J]. 应用数学和力学, 2024, 45(2): 167-174. doi: 10.21656/1000-0887.440249
引用本文: 范志庚, 万强, 牛红攀, 靳凡. 计及时变演化特征的硅泡沫垫层非线性黏弹性模型研究[J]. 应用数学和力学, 2024, 45(2): 167-174. doi: 10.21656/1000-0887.440249
FAN Zhigeng, WAN Qiang, NIU Hongpan, JIN Fan. A Nonlinear Viscoelastic Model for Silicon Rubber Foam Cushion Considering Time-Varying Evolution Characteristics[J]. Applied Mathematics and Mechanics, 2024, 45(2): 167-174. doi: 10.21656/1000-0887.440249
Citation: FAN Zhigeng, WAN Qiang, NIU Hongpan, JIN Fan. A Nonlinear Viscoelastic Model for Silicon Rubber Foam Cushion Considering Time-Varying Evolution Characteristics[J]. Applied Mathematics and Mechanics, 2024, 45(2): 167-174. doi: 10.21656/1000-0887.440249

计及时变演化特征的硅泡沫垫层非线性黏弹性模型研究

doi: 10.21656/1000-0887.440249
基金项目: 

国家自然科学基金委员会-中国工程物理研究院NSAF联合基金 U2130206

详细信息
    通讯作者:

    范志庚(1978—),男,高级工程师,博士(通讯作者. E-mail: fanzg@caep.cn)

  • 中图分类号: O341

A Nonlinear Viscoelastic Model for Silicon Rubber Foam Cushion Considering Time-Varying Evolution Characteristics

  • 摘要: 基于黏弹性基本理论,引入材料非线性特征,考虑了材料加载、保载应力松弛历史、老化效应以及黏弹性模型各运动单元退化的差异性,并从两种老化机制出发,获得了老化硅泡沫垫层力学模型以及长时应力松弛硅泡沫垫层接续加载力学模型.模型机理清晰,能够反映材料服役历史信息及其对力学效应的影响.
  • 图  1  广义Maxwell模型

    Figure  1.  General Maxwell model

    图  2  材料老化不可逆变形

    Figure  2.  Irreversible deformation schematic diagram of the aged foam

    图  3  材料老化前后的压缩力学性能曲线

    Figure  3.  Compressive curves of fresh and aged silicone rubber foams

    图  4  广义黏弹塑性模型

    Figure  4.  The general viscoelastic-plastic model

    图  5  Burgers模型

    Figure  5.  The Burgers model

    图  6  某硅泡沫垫层压缩实验曲线拟合

    Figure  6.  Fitting of the compressive curve of the silicone rubber foam

    图  7  8参数黏弹塑性模型

    Figure  7.  The 8-parameter viscoelastic-plastic model

    图  8  3种状态力学响应对比

    Figure  8.  Differences in mechanical responses

  • [1] OGDEN R W, ISHERWOOD D A. Solution of some finite plane-strain problems for compressible elastic solids[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1978, 31: 219-249. doi: 10.1093/qjmam/31.2.219
    [2] DOLL S, SCHWEIZERHOF K. On the developments of volumetric strain-energy functions[J]. Journal of Applied Mechanics, 2000, 67: 17-21. doi: 10.1115/1.321146
    [3] 刘占芳, 励凌峰, 胡文军. 多孔硅橡胶有限变形的弹性行为[J]. 应用力学学报, 2002, 19(2): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200202011.htm

    LIU Zhanfang, LI Lingfeng, HU Wenjun. Elastic behaviors of porous silicon rubber at finite deformation[J]. Chinese Journal of Applied Mechanics, 2002, 19(2): 48-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200202011.htm
    [4] LEWIS M. A robust, compressible, hyperelastic constitutive model for the mechanical response of foamed rubber[J]. Technische Mechanik, 2016, 36(1/2): 88-101.
    [5] 王翕, 石耀刚, 李明, 等. 温度对硅泡沫材料短时应力松弛性能的影响[J]. 化工新型材料, 2012, 40(10): 77-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201210029.htm

    WANG Xi, SHI Yaogang, LI Ming, et al. Effects of temperature on the stress relaxation properties of silicone rubber foam[J]. New Chemical Materials, 2012, 40(10): 77-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201210029.htm
    [6] SCHNEIDER J W. Stress relaxation of cellular silicone material: BDX-613-3535[R]. 1985.
    [7] 史平安, 尹益辉, 王军, 等. 柔性硅泡沫薄片的短时松弛行为研究[J]. 固体力学学报, 2006, 27(S1): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX2006S1004.htm

    SHI Ping'an, YIN Yihui, WANG Jun, et al. A study on the stress relaxation properties of silicone foam cushion in composite structure[J]. Acta Mechanica Solida Sinica, 2006, 27(S1): 18-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX2006S1004.htm
    [8] 张凯, 范敬辉, 吴菊英, 等. 硅橡胶泡沫材料的热氧老化机理研究[J]. 合成材料老化与应用, 2007, 36(3): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE200703005.htm

    ZHANG Kai, FAN Jinghui, WU Juying, et al. Study on thermal-oxydative ageing mechanisms of silicone rubber foam materials[J]. Synthetic Materials Aging and Application, 2007, 36(3): 18-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE200703005.htm
    [9] WANG H Y, QIU Y, HU W J, et al, Gamma radiation induced compressive response of silicon rubber foam: experiments and modeling[J]. Journal of Materials Research, 2019, 34(13): 2914-2200.
    [10] CHEN H B, LIU B, HUANG W, et al. Gamma radiation induced effects of compressed silicone foam[J]. Polymer Degradation and Stability, 2015, 114: 89-93. doi: 10.1016/j.polymdegradstab.2015.02.007
    [11] MAITI A, WEISGRABER T H, SMALL W, et al. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models: LLNL-TR-713677[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2016.
    [12] JIA D, YAN S, PENG Y, et al. Constitutive modeling of γ-irradiated silicone rubber foams under compression and shear loading[J]. Polymer Degradation and Stability, 2021, 183: 109410. doi: 10.1016/j.polymdegradstab.2020.109410
    [13] FANG H, LI J, CHEN H, et al. Radiation induced degradation of silica reinforced silicone foam: experiments and modeling[J]. Mechanics of Materials, 2017, 105: 148-156. doi: 10.1016/j.mechmat.2016.11.006
    [14] MAITI A, SMALL W, KROONBLAWD M P, et al. Constitutive model of radiation aging effects in filled silicone elastomers under strain[J]. Journal of Physical Chemistry B, 2021, 125(35): 10047-10057. doi: 10.1021/acs.jpcb.1c04958
    [15] LOU Weitao, XIE Chaoyang, GUAN Xuefei. Thermal-aging constitutive model for a silicone rubber foam under compression[J]. Polymer Degradation and Stability, 2022, 198(1): 109873.
  • 加载中
图(8)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  32
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 修回日期:  2023-12-13
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回