留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔介质中非稳态Maxwell流体在振荡旋转圆盘上的斜驻点滑移流动研究

白羽 向俊霖 张艳 刘春燕

白羽, 向俊霖, 张艳, 刘春燕. 多孔介质中非稳态Maxwell流体在振荡旋转圆盘上的斜驻点滑移流动研究[J]. 应用数学和力学, 2025, 46(9): 1196-1208. doi: 10.21656/1000-0887.450156
引用本文: 白羽, 向俊霖, 张艳, 刘春燕. 多孔介质中非稳态Maxwell流体在振荡旋转圆盘上的斜驻点滑移流动研究[J]. 应用数学和力学, 2025, 46(9): 1196-1208. doi: 10.21656/1000-0887.450156
BAI Yu, XIANG Junlin, ZHANG Yan, LIU Chunyan. Oblique Stagnation Point Slip Flow of Unsteady Maxwell Fluid on an Oscillating-Rotating Disk in Porous Medium[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1196-1208. doi: 10.21656/1000-0887.450156
Citation: BAI Yu, XIANG Junlin, ZHANG Yan, LIU Chunyan. Oblique Stagnation Point Slip Flow of Unsteady Maxwell Fluid on an Oscillating-Rotating Disk in Porous Medium[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1196-1208. doi: 10.21656/1000-0887.450156

多孔介质中非稳态Maxwell流体在振荡旋转圆盘上的斜驻点滑移流动研究

doi: 10.21656/1000-0887.450156
基金项目: 

KM202210016001)

北京市教育委员会科技计划一般项目(KM202310016001

国家自然科学基金(12102032)

详细信息
    作者简介:

    白羽(1979—),女,教授,博士,硕士生导师 (通讯作者. E-mail: baiyu@bucea.edu.cn);向俊霖(2000—),男,硕士生(E-mail: 1600408272@qq.com);张艳(1972—),女,教授,博士,博士生导师(E-mail: zhangyan1@bucea.edu.cn);刘春燕(1992—),女,博士,硕士生导师(通讯作者. E-mail: liuchunyan@bucea.edu.cn).

    通讯作者:

    刘春燕(1992—),女,博士,硕士生导师(通讯作者. E-mail: liuchunyan@bucea.edu.cn).

  • 中图分类号: O357

Oblique Stagnation Point Slip Flow of Unsteady Maxwell Fluid on an Oscillating-Rotating Disk in Porous Medium

Funds: 

The National Science Foundation of China(12102032)

  • 摘要: 研究了多孔介质中Maxwell流体在具有振荡速度的旋转圆盘上的非稳态斜驻点流动问题.首先,考虑了流体的滑移效应,利用改进的Darcy-Maxwell本构关系和斜驻点流动特征建立了多孔介质中的非稳态流动模型,并通过求解常微分方程对压强项进行了修正.接着,利用合理的相似变换将控制方程转化为耦合的无量纲偏微分方程组,用同伦分析方法首次得到了模型的近似解析解.最后,绘制了随圆盘转速变化的二维流线图、在不同倾斜参数下的三维流线图、不同振幅下随时间变化的速度图,以及速度随其他参数变化的图形.结果表明:Deborah数的增加使流体受离心力影响加大,流动加速;Darcy参数增大导致了多孔介质的孔隙增多,流速增加;增大滑移参数,一方面会减小圆盘附近流体受到的阻碍,促进流体流动,另一方面会减小离心力对远离圆盘的流体的影响,减缓流体流动.这些结果为旋转涂层、薄膜制备等相关领域的进一步研究提供了理论指导.
  • 张晟庭, 李靖, 陈掌星, 等. 液桥的动态界面特性对液-液自发渗吸的影响研究[J]. 力学学报, 2024,56(4): 258-272.

    (ZHANG Shengting, LI Jing, CHEN Zhangxing, et al. Study on the effect of dynamic interfacial properties of liquid bridges on spontaneous liquid-liquid imbibition[J].Chinese Journal of Theoretical and Applied Mechanics,2024,56(4): 258-272. (in Chinese))
    [2]李树光, 曲凯. 多孔介质中单相气体局部流动的均质化建模[J]. 应用数学和力学, 2024,45(2): 175-183. (LI Shuguang, QU Kai. Homogenization modeling of single-phase gas local flow in porous media[J].Applied Mathematics and Mechanics,2024,45(2): 175-183. (in Chinese))
    [3]何树, 娄钦. 多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究[J]. 应用数学和力学, 2024,45(3): 348-364. (HE Shu, LOU Qin. Simulation study of porosity effects of porous media on pool boiling heat transfer performances[J].Applied Mathematics and Mechanics,2024,45(3): 348-364. (in Chinese))
    [4]钟会影, 史博文, 毕永斌, 等. 黏弹性聚合物驱渗流机理研究进展[J]. 力学学报, 2024,56(3): 847-861.(ZHONG Huiying, SHI Bowen, BI Yongbin, et al. Flow mechanism of viscoelastic polymer flooding: state of the art review and outlook[J].Chinese Journal of Theoretical and Applied Mechanics,2024,56(3): 847-861. (in Chinese))
    [5]LIU J, WANG S, ZHAO M, et al. Dynamic response of Maxwell fluid in an elastic cylindrical tube[J].Physics of Fluids,2022,34(7): 073109.
    [6]BAI Y, FANG H, ZHANG Y. Entropy generation analysis on unsteady flow of Maxwell nanofluid over the stretched wedge with Cattaneo-Christov double diffusion[J].International Journal of Numerical Methods for Heat & Fluid Flow,2022,32(6): 2198-2220.
    [7]方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性[J]. 物理学报, 2020,69(21): 270-280. (FANG Fang, BAO Lin, TONG Binggang. Heat transfer characteristics of shear layer impinging on wall based on oblique stagnation-point model[J].Acta Physica Sinica,2020,69(21): 270-280. (in Chinese))
    [8]LABROPULU F, LI D, POP I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer[J].International Journal of Thermal Sciences,2010,49(6): 1042-1050.
    [9]STUART J T. The viscous flow near a stagnation point when the external flow has uniform vorticity[J].Journal of the Aerospace Sciences,1959,26(2): 124-125.
    [10]TAMADA. Two-dimensional stagnation-point flow impinging obliquely on a plane wall[J].Journal of the Physical Society of Japan,1979,46(1): 310-311.
    [11]GHAFFARI A, JAVED T, HSIAO K L. Heat transfer analysis of unsteady oblique stagnation point flow of elastico-viscous fluid due to sinusoidal wall temperature over an oscillating-stretching surface: a numerical approach[J].Journal of Molecular Liquids,2016,219: 748-755.
    [12]NADEEM S, RIAZ KHAN M, KHAN A U. MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions[J].Physica Scripta,2019,94(7): 075204.
    [13]KHAN A U, NADEEM S, HUSSAIN S T. Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field[J].Journal of Molecular Liquids,2016,224: 1210-1219.
    [14]NAGANTHRAN K, NAZAR R, POP I. Stability analysis of impinging oblique stagnation-point flow over a permeable shrinking surface in a viscoelastic fluid[J].International Journal of Mechanical Sciences,2017,131: 663-671.
    [15]NGUYEN M N, SAJJAD T, LE T H, et al. Modified Chebyshev wavelets approach for mixed convection flow due to oblique stagnation point along a vertically moving surface with zero mass flux of nanoparticles[J].Journal of Molecular Liquids,2021,343: 117569.
    [16]GIANTESIO G, VERNA A, RO 瘙 塁 CA N C, et al. MHD mixed convection oblique stagnation-point flow on a vertical plate[J].International Journal of Numerical Methods for Heat & Fluid Flow,2017,27(12): 2744-2767.
    [17]BAI Y, TANG Q, ZHANG Y. Unsteady inclined stagnation point flow and thermal transmission of Maxwell fluid on a stretched/contracted plate with modified pressure field[J].International Journal of Numerical Methods for Heat & Fluid Flow,2022,32(12): 3824-3847.
    [18]白羽, 唐巧丽, 张艳. Chebyshev谱方法研究非稳态Maxwell流体在轴向余弦振荡圆柱上的斜驻点流动[J]. 应用数学和力学, 2023,44(10): 1226-1235. (BAI Yu, TANG Qiaoli, ZHANG Yan. A Chebyshev spectral method for the unsteady Maxwell oblique stationary point flow on an axially cosine oscillating cylinder[J].Applied Mathematics and Mechanics,2023,44(10): 1226-1235. (in Chinese))
    [19]陈文芳, 蔡扶时, 许元泽. Casson流体在旋转圆盘上的流动[J]. 力学学报,1987,19(2): 111-117. (CHEN Wenfang, CAI Fushi, XU Yuanze. Flow of Casson fluid on a rotating disk[J].Acta Mechanica Sinica,1987,19(2): 111-117. (in Chinese))
    [20]范椿, 陈耀松. Bingham流体在旋转圆盘上流动的数值解[J]. 力学学报, 1995,27(S1): 14-19. (FAN Chun, CHEN Yaosong. Numerical solution of the flow of a Bingham fluid on a rotating DlSK[J].Acta Mechanica Sinica,1995,27(S1): 14-19. (in Chinese))
    [21]VON KRMN T. ber laminare und turbulente reibung[J].ZAMM Journal of Applied Mathematics and Mechanics,1921,1(4): 233-252.
    [22]明春英, 郑连存, 张欣欣. 幂律流体在旋转盘上的流动与传热数值分析[J]. 北京科技大学学报, 2011,33(9): 1166-1170. (MING Chunying, ZHENG Liancun, ZHANG Xinxin. Numerical analysis of the flow and heat transfer of a power-law fluid over a rotating disk[J].Journal of University of Science and Technology Beijing,2011,33(9): 1166-1170. (in Chinese))
    [23]DINARVAND S. On explicit, purely analytic solutions of off-centered stagnation flow towards a rotating disc by means of HAM[J].Nonlinear Analysis:Real World Applications,2010,11(5): 3389-3398.
    [24]VIJAY N, SHARMA K. Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: a numerical investigation[J].International Communications in Heat and Mass Transfer,2023,141: 106545.
    [25]HAYAT T, NAWAZ M. Unsteady stagnation point flow of viscous fluid caused by an impulsively rotating disk[J].Journal of the Taiwan Institute of Chemical Engineers,2011,42(1): 41-49.
    [26]AHMED A, KHAN M, AHMED J, et al. Unsteady stagnation point flow of Maxwell nanofluid over stretching disk with joule heating[J].Arabian Journal for Science and Engineering,2020,45(7): 5529-5540.
    [27]KHAN M I, KHAN W A, WAQAS M, et al. Numerical simulation for MHD Darcy-Forchheimer three-dimensional stagnation point flow by a rotating disk with activation energy and partial slip[J].Applied Nanoscience,2020,10(12): 5469-5477.
    [28]LOK Y Y, MERKIN J H, POP I. Axisymmetric rotational stagnation-point flow impinging on a permeable stretching/shrinking rotating disk[J].European Journal of Mechanics B: Fluids,2018,72: 275-292.
    [29]SARKAR S, SAHOO B. Oblique stagnation flow towards a rotating disc[J].European Journal of Mechanics B: Fluids,2021,85: 82-89.
    [30]MAHMUD K, DURAIHEM F Z, MEHMOOD R, et al. Heat transport in inclined flow towards a rotating disk under MHD[J].Scientific Reports,2023,13: 5949.
    [31]TAN W, MASUOKA T. Stability analysis of a Maxwell fluid in a porous medium heated from below[J].Physics Letters A,2007,360(3): 454-460.
    [32]WANG C Y. Off-centered stagnation flow towards a rotating disc[J].International Journal of Engineering Science,2008,46(4): 391-396.
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-10-17
  • 网络出版日期:  2025-10-17

目录

    /

    返回文章
    返回