张晟庭, 李靖, 陈掌星, 等. 液桥的动态界面特性对液-液自发渗吸的影响研究[J]. 力学学报, 2024,56(4): 258-272.(ZHANG Shengting, LI Jing, CHEN Zhangxing, et al. Study on the effect of dynamic interfacial properties of liquid bridges on spontaneous liquid-liquid imbibition[J].Chinese Journal of Theoretical and Applied Mechanics,2024,56(4): 258-272. (in Chinese))
|
[2]李树光, 曲凯. 多孔介质中单相气体局部流动的均质化建模[J]. 应用数学和力学, 2024,45(2): 175-183. (LI Shuguang, QU Kai. Homogenization modeling of single-phase gas local flow in porous media[J].Applied Mathematics and Mechanics,2024,45(2): 175-183. (in Chinese))
|
[3]何树, 娄钦. 多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究[J]. 应用数学和力学, 2024,45(3): 348-364. (HE Shu, LOU Qin. Simulation study of porosity effects of porous media on pool boiling heat transfer performances[J].Applied Mathematics and Mechanics,2024,45(3): 348-364. (in Chinese))
|
[4]钟会影, 史博文, 毕永斌, 等. 黏弹性聚合物驱渗流机理研究进展[J]. 力学学报, 2024,56(3): 847-861.(ZHONG Huiying, SHI Bowen, BI Yongbin, et al. Flow mechanism of viscoelastic polymer flooding: state of the art review and outlook[J].Chinese Journal of Theoretical and Applied Mechanics,2024,56(3): 847-861. (in Chinese))
|
[5]LIU J, WANG S, ZHAO M, et al. Dynamic response of Maxwell fluid in an elastic cylindrical tube[J].Physics of Fluids,2022,34(7): 073109.
|
[6]BAI Y, FANG H, ZHANG Y. Entropy generation analysis on unsteady flow of Maxwell nanofluid over the stretched wedge with Cattaneo-Christov double diffusion[J].International Journal of Numerical Methods for Heat & Fluid Flow,2022,32(6): 2198-2220.
|
[7]方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性[J]. 物理学报, 2020,69(21): 270-280. (FANG Fang, BAO Lin, TONG Binggang. Heat transfer characteristics of shear layer impinging on wall based on oblique stagnation-point model[J].Acta Physica Sinica,2020,69(21): 270-280. (in Chinese))
|
[8]LABROPULU F, LI D, POP I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer[J].International Journal of Thermal Sciences,2010,49(6): 1042-1050.
|
[9]STUART J T. The viscous flow near a stagnation point when the external flow has uniform vorticity[J].Journal of the Aerospace Sciences,1959,26(2): 124-125.
|
[10]TAMADA. Two-dimensional stagnation-point flow impinging obliquely on a plane wall[J].Journal of the Physical Society of Japan,1979,46(1): 310-311.
|
[11]GHAFFARI A, JAVED T, HSIAO K L. Heat transfer analysis of unsteady oblique stagnation point flow of elastico-viscous fluid due to sinusoidal wall temperature over an oscillating-stretching surface: a numerical approach[J].Journal of Molecular Liquids,2016,219: 748-755.
|
[12]NADEEM S, RIAZ KHAN M, KHAN A U. MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions[J].Physica Scripta,2019,94(7): 075204.
|
[13]KHAN A U, NADEEM S, HUSSAIN S T. Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field[J].Journal of Molecular Liquids,2016,224: 1210-1219.
|
[14]NAGANTHRAN K, NAZAR R, POP I. Stability analysis of impinging oblique stagnation-point flow over a permeable shrinking surface in a viscoelastic fluid[J].International Journal of Mechanical Sciences,2017,131: 663-671.
|
[15]NGUYEN M N, SAJJAD T, LE T H, et al. Modified Chebyshev wavelets approach for mixed convection flow due to oblique stagnation point along a vertically moving surface with zero mass flux of nanoparticles[J].Journal of Molecular Liquids,2021,343: 117569.
|
[16]GIANTESIO G, VERNA A, RO 瘙 塁 CA N C, et al. MHD mixed convection oblique stagnation-point flow on a vertical plate[J].International Journal of Numerical Methods for Heat & Fluid Flow,2017,27(12): 2744-2767.
|
[17]BAI Y, TANG Q, ZHANG Y. Unsteady inclined stagnation point flow and thermal transmission of Maxwell fluid on a stretched/contracted plate with modified pressure field[J].International Journal of Numerical Methods for Heat & Fluid Flow,2022,32(12): 3824-3847.
|
[18]白羽, 唐巧丽, 张艳. Chebyshev谱方法研究非稳态Maxwell流体在轴向余弦振荡圆柱上的斜驻点流动[J]. 应用数学和力学, 2023,44(10): 1226-1235. (BAI Yu, TANG Qiaoli, ZHANG Yan. A Chebyshev spectral method for the unsteady Maxwell oblique stationary point flow on an axially cosine oscillating cylinder[J].Applied Mathematics and Mechanics,2023,44(10): 1226-1235. (in Chinese))
|
[19]陈文芳, 蔡扶时, 许元泽. Casson流体在旋转圆盘上的流动[J]. 力学学报,1987,19(2): 111-117. (CHEN Wenfang, CAI Fushi, XU Yuanze. Flow of Casson fluid on a rotating disk[J].Acta Mechanica Sinica,1987,19(2): 111-117. (in Chinese))
|
[20]范椿, 陈耀松. Bingham流体在旋转圆盘上流动的数值解[J]. 力学学报, 1995,27(S1): 14-19. (FAN Chun, CHEN Yaosong. Numerical solution of the flow of a Bingham fluid on a rotating DlSK[J].Acta Mechanica Sinica,1995,27(S1): 14-19. (in Chinese))
|
[21]VON KRMN T. ber laminare und turbulente reibung[J].ZAMM Journal of Applied Mathematics and Mechanics,1921,1(4): 233-252.
|
[22]明春英, 郑连存, 张欣欣. 幂律流体在旋转盘上的流动与传热数值分析[J]. 北京科技大学学报, 2011,33(9): 1166-1170. (MING Chunying, ZHENG Liancun, ZHANG Xinxin. Numerical analysis of the flow and heat transfer of a power-law fluid over a rotating disk[J].Journal of University of Science and Technology Beijing,2011,33(9): 1166-1170. (in Chinese))
|
[23]DINARVAND S. On explicit, purely analytic solutions of off-centered stagnation flow towards a rotating disc by means of HAM[J].Nonlinear Analysis:Real World Applications,2010,11(5): 3389-3398.
|
[24]VIJAY N, SHARMA K. Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: a numerical investigation[J].International Communications in Heat and Mass Transfer,2023,141: 106545.
|
[25]HAYAT T, NAWAZ M. Unsteady stagnation point flow of viscous fluid caused by an impulsively rotating disk[J].Journal of the Taiwan Institute of Chemical Engineers,2011,42(1): 41-49.
|
[26]AHMED A, KHAN M, AHMED J, et al. Unsteady stagnation point flow of Maxwell nanofluid over stretching disk with joule heating[J].Arabian Journal for Science and Engineering,2020,45(7): 5529-5540.
|
[27]KHAN M I, KHAN W A, WAQAS M, et al. Numerical simulation for MHD Darcy-Forchheimer three-dimensional stagnation point flow by a rotating disk with activation energy and partial slip[J].Applied Nanoscience,2020,10(12): 5469-5477.
|
[28]LOK Y Y, MERKIN J H, POP I. Axisymmetric rotational stagnation-point flow impinging on a permeable stretching/shrinking rotating disk[J].European Journal of Mechanics B: Fluids,2018,72: 275-292.
|
[29]SARKAR S, SAHOO B. Oblique stagnation flow towards a rotating disc[J].European Journal of Mechanics B: Fluids,2021,85: 82-89.
|
[30]MAHMUD K, DURAIHEM F Z, MEHMOOD R, et al. Heat transport in inclined flow towards a rotating disk under MHD[J].Scientific Reports,2023,13: 5949.
|
[31]TAN W, MASUOKA T. Stability analysis of a Maxwell fluid in a porous medium heated from below[J].Physics Letters A,2007,360(3): 454-460.
|
[32]WANG C Y. Off-centered stagnation flow towards a rotating disc[J].International Journal of Engineering Science,2008,46(4): 391-396.
|