BARSOUM R. History of high strain rate elastomeric polymers (HSREP) application[M]//BARSOUM R G.Elastomeric Polymers With High Rate Sensitivity.Amsterdam: Elsevier, 2015: 1-4.
|
[2]ROLAND C M, FRAGIADAKIS D, GAMACHE R M. Elastomer-steel laminate armor[J].Composite Structures,2010,92(5): 1059-1064.
|
[3]BOGOSLOVOV R B, ROLAND C M, GAMACHE R M. Impact-induced glass transition in elastomeric coatings[J].Applied Physics Letters,2007,90(22): 221910.
|
[4]TEKALUR S A, SHUKLA A, SHIVAKUMAR K. Blast resistance of polyurea based layered composite materials[J].Composite Structures,2008,84(3): 271-281.
|
[5]CHEN C, WANG X, HOU H, et al. Effect of strength matching on failure characteristics of polyurea coated thin metal plates under localized air blast loading: experiment and numerical analysis[J].Thin-Walled Structures,2020,154: 106819.
|
[6]LI T, ZHANG C, XIE Z, et al. A multi-scale investigation on effects of hydrogen bonding on micro-structure and macro-properties in a polyurea[J].Polymer,2018,145: 261-271.
|
[7]CASTAGNA A M, PANGON A, CHOI T, et al. The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas[J].Macromolecules,2012,45(20): 8438-8444.
|
[8]IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea coatings for enhanced blast-mitigation: a review[J].RSC Advances,2016,6(111): 109706-109717.
|
[9]AMIRKHIZI A V, ISAACS J, MCGEE J, et al. An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects[J]. Philosophical Magazine,2006,86(36): 5847-5866.
|
[10]QIAO J, AMIRKHIZI A V, SCHAAF K, et al. Dynamic mechanical and ultrasonic properties of polyurea[J].Mechanics of Materials,2011,43(10): 598-607.
|
[11]CHENG J, LIU Z L, LUO C C, et al. Revealing the high-frequency attenuation mechanism of polyurea-matrix composites[J].Acta Mechanica Sinica,2020,36(1): 130-142.
|
[12]ROLAND C M, CASALINI R. Effect of hydrostatic pressure on the viscoelastic response of polyurea[J].Polymer,2007,48(19): 5747-5752.
|
[13]CHOI T, FRAGIADAKIS D, ROLAND C M, et al. Microstructure and segmental dynamics of polyurea under uniaxial deformation[J].Macromolecules,2012,45(8): 3581-3589.
|
[14]MOTT P H, GILLER C B, FRAGIADAKIS D, et al. Deformation of polyurea: where does the energy go?[J].Polymer,2016,105: 227-233.
|
[15]RINALDI R G, BOYCE M C, WEIGAND S J, et al. Microstructure evolution during tensile loading histories of a polyurea[J].Journal of Polymer Science (Part B):Polymer Physics,2011,49(23): 1660-1671.
|
[16]GONG C, CHEN Y, LI T, et al. Free volume based nonlinear viscoelastic model for polyurea over a wide range of strain rates and temperatures[J].Mechanics of Materials,2021,152: 103650.
|
[17]GUO H, GUO W, AMIRKHIZI A V, et al. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures[J].Polymer Testing,2016,53: 234-244.
|
[18]MOTT P H, TWIGG J N, ROLAND D F, et al. High-speed tensile test instrument[J].Review of Scientific Instruments,2007,78(4): 045105.
|
[19]YI J, BOYCE M C, LEE G F, et al. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes[J].Polymer,2006,47(1): 319-329.
|
[20]QI H J, BOYCE M C. Stress-strain behavior of thermoplastic polyurethanes[J].Mechanics of Materials,2005,37(8): 817-839.
|
[21]CHO H, RINALDI R G, BOYCE M C. Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyurea[J].Soft Matter,2013,9(27): 6319.
|
[22]CLIFTON R J, JIAO T. Pressure and strain-rate sensitivity of an elastomer: (1) pressure-shear plate impact experiments; (2) constitutive modeling[M]//BARSOUM R G.Elastomeric Polymers With High Rate Sensitivity.Amsterdam: Elsevier, 2015: 17-65.
|
[23]RANSOM T C, AHART M, HEMLEY R J, et al. Acoustic properties and density of polyurea at pressure up to 13.5 GPa through Brillouin scattering spectroscopy[J].Journal of Applied Physics,2018,123(19): 195102.
|
[24]ZHU Y, LIECHTI K M, RAVI-CHANDAR K. Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces[J].International Journal of Solids and Structures,2009,46(1): 31-51.
|
[25]HEYDEN S, LI B, WEINBERG K, et al. A micromechanical damage and fracture model for polymers based on fractional strain-gradient elasticity[J].Journal of the Mechanics and Physics of Solids,2015,74: 175-195.
|
[26]CUI Z, BRINSON L C. Thermomechanical properties and deformation of coarse-grained models of hard-soft block copolymers[J].Physical Review E,2013,88(2): 022602.
|
[27]ZHU S, LEMPESIS N, IN ‘T VELD P J, et al. Molecular simulation of thermoplastic polyurethanes under large tensile deformation[J].Macromolecules,2018,51(5): 1850-1864.
|
[28]ZHU S, LEMPESIS N, IN ‘T VELD P J, et al. Molecular simulation of thermoplastic polyurethanes under large compressive deformation[J].Macromolecules,2018,51(22): 9306-9316.
|
[29]CHANTAWANSRI T L, SLIOZBERG Y R, ANDZELM J W, et al. Coarse-grained modeling of model poly(urethane urea)s: microstructure and interface aspects[J].Polymer,2012,53(20): 4512-4524.
|
[30]GRUJICIC M, PANDURANGAN B, KING A E, et al. Multi-length scale modeling and analysis of microstructure evolution and mechanical properties in polyurea[J].Journal of Materials Science,2011,46(6): 1767-1779.
|
[31]FUJIMOTO K, TANG Z, SHINODA W, et al. All-atom molecular dynamics study of impact fracture of glassy polymers Ⅰ: molecular mechanism of brittleness of PMMA and ductility of PC[J].Polymer,2019,178: 121570.
|
[32]MAKKE A, PEREZ M, ROTTLER J, et al. Predictors of cavitation in glassy polymers under tensile strain: a coarse-grained molecular dynamics investigation[J].Macromolecular Theory and Simulations,2011,20(9): 826-836.
|
[33]BALJON A R C, ROBBINS M O. Simulations of crazing in polymer glasses: effect of chain length and surface tension[J].Macromolecules,2001,34(12): 4200-4209.
|
[34]MAHAJAN D K, SINGH B, BASU S. Void nucleation and disentanglement in glassy amorphous polymers[J].Physical Review E,2010,82: 011803.
|
[35]BAI Y, LIU C, HUANG G, et al. A hyper-viscoelastic constitutive model for polyurea under uniaxial compressive loading[J].Polymers,2016,8(4): 133.
|
[36]CHEVELLARD G, RAVI-CHANDAR K, LIECHTI K M. Modeling the nonlinear viscoelastic behavior of polyurea using a distortion modified free volume approach[J].Mechanics of Time-Dependent Materials,2012,16(2): 181-203.
|
[37]GAMONPILAS C, MCCUISTON R. A non-linear viscoelastic material constitutive model for polyurea[J].Polymer,2012,53(17): 3655-3658.
|
[38]SHIM J, MOHR D. Rate dependent finite strain constitutive model of polyurea[J].International Journal of Plasticity,2011,27(6): 868-886.
|
[39]GRUJICIC M, HE T, PANDURANGAN B, et al. Experimental characterization and material-model development for microphase-segregated polyurea: an overview[J].Journal of Materials Engineering and Performance,2012,21(1): 2-16.
|
[40]LI C, LUA J. A hyper-viscoelastic constitutive model for polyurea[J].Materials Letters,2019,63: 877-880.
|
[41]FILONOVA V, LIU Y, FISH J. Singlescale and multiscale models of polyurea and high-density polyethylene (HDPE) subjected to high strain rates[M]//BARSOUM R G.Elastomeric Polymers With High Rate Sensitivity.
Amsterdam: Elsevier, 2015: 233-256.
|
[42]KEY C T, GORFAIN J E. A modified rate-dependent ballistic impact model for polyurea[M]//BARSOUM R G.Elastomeric Polymers With High Rate Sensitivity.Amsterdam: Elsevier, 2015: 304-318.
|
[43]CLIFTON R J, WANG X, JIAO T. A physically-based, quasilinear viscoelasticity model for the dynamic response of polyurea[J].Journal of the Mechanics and Physics of Solids,2016,93: 8-15.
|
[44]GURSON A L. Plastic Flow and fracture behavior of ductile materials incorporating void nucleaiion, growth and interaction[D]. Providence: Brown University, 1975.
|
[45]TVERGAARD V, NEEDLEMAN A. Analysis of the cup-cone fracture in a round tensile bar[J].Acta Metallurgica,1984,32(1): 157-169.
|
[46]ZARI F, NAT-ABDELAZIZ M, GLOAGUEN J M, et al. A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation[J].International Journal of Plasticity,2011,27(1): 25-51.
|
[47]CHALLIER M, BESSON J, LAIARINANDRASANA L, et al. Damage and fracture of polyvinylidene fluoride (PVDF) at 20 ℃: experiments and modelling[J].Engineering Fracture Mechanics,2006,73(1): 79-90.
|
[48]GEARING B, ANAND L. On modeling the deformation and fracture response of glassy polymers due to shear-yielding and crazing[J].International Journal of Solids and Structures,2004,41(11/12): 3125-3150.
|
[49]CHOWDHURY K A, BENZERGA A A, TALREJA R. An analysis of impact-induced deformation and fracture modes in amorphous glassy polymers[J].Engineering Fracture Mechanics,2008,75(11): 3328-3342.
|
[50]MIEHE C, HOFACKER M, SCHNZEL L M, et al. Phase field modeling of fracture in multi-physics problems, part Ⅱ: Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[J].Computer Methods in Applied Mechanics and Engineering,2015,294: 486-522.
|
[51]NARAYAN S, ANAND L. Fracture of amorphous polymers: a gradient-damage theory[J].Journal of the Mechanics and Physics of Solids,2021,146: 104164.
|
[52]FRANCIS D K, BOUVARD J L, HAMMI Y, et al. Formulation of a damage internal state variable model for amorphous glassy polymers[J].International Journal of Solids and Structures,2014,51(15/16): 2765-2776.
|
[53]ZHAO J, KNAUSS W G, RAVICHANDRAN G. Applicability of the time-temperature superposition principle in modeling dynamic response of a polyurea[J].Mechanics of Time-Dependent Materials,2007,11(3): 289-308.
|
[54]YAO K, LIU Z, LI T, et al. Mesoscale structure-based investigation of polyurea dynamic modulus and shock-wave dissipation[J].Polymer,2020,202: 122741.
|
[55]AGRAWAL V, HOLZWORTH K, NANTASETPHONG W, et al. Prediction of viscoelastic properties with coarse-grained molecular dynamics and experimental validation for a benchmark polyurea system[J].Journal of Polymer Science (Part B):Polymer Physics,
2016,54(8): 797-810.
|
[56]GRUJICIC M, SNIPES J S, RAMASWAMI S, et al. Coarse-grained molecular-level analysis of polyurea properties and shock-mitigation potential[J].Journal of Materials Engineering and Performance,2013.22(7): 1964-1981.
|
[57]KRGER M. Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems[J].Computer Physics Communications,2005,168(3): 209-232.
|
[58]LEE H S, YOO S R, SEO S W. Domain and segmental deformation behavior of thermoplastic elastomers using synchrotron SAXS and FTIR methods[J].Journal of Polymer Science (Part B):Polymer Physics,1999,37(22): 3233-3245.
|
[59]YAO K, CHU D, LI T, et al. Atomic-scale simulation of hugoniot relations and energy dissipation of polyurea under high-speed shock[J].Engineering Computations,2021,38(3): 1209-1225.
|
[60]YAO K, LIU Z, ZHUANG Z. Atomic insights into shock-induced spalling of polyurea by molecular dynamics simulation[J].Extreme Mechanics Letters,2022,55: 101805.
|
[61]CHU D, LI Z, YAO K, et al. Studying the strengthening mechanism and thickness effect ofelastomer coating on the ballistic-resistance of the polyurea-coated steel plate[J].International Journal of Impact Engineering,2022,163: 104181.
|
[62]CHU D, WANG Y, YANG S, et al. Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate[J].Defence Technology,2023,19: 35-51.
|
[63]PORTER D.Group Interaction Modelling of Polymer Properties[M]. New York: Marcel Dekker, 1995.
|
[64]JIAO T, CLIFTON R, GRUNSCHEL S. Pressure-sensitivity and tensile strength of an elastomer at high strain rates[C]//AIP Conference Proceedings,2007.
|