留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个关于流动能量耗散率的minimax变分原理

陈波 李孝伟 刘高联

陈波, 李孝伟, 刘高联. 一个关于流动能量耗散率的minimax变分原理[J]. 应用数学和力学, 2010, 31(7): 772-780. doi: 10.3879/j.issn.1000-0887.2010.07.002
引用本文: 陈波, 李孝伟, 刘高联. 一个关于流动能量耗散率的minimax变分原理[J]. 应用数学和力学, 2010, 31(7): 772-780. doi: 10.3879/j.issn.1000-0887.2010.07.002
CHEN Bo, LI Xiao-wei, LIU Gao-lian. A Minimax Principle on Energy Dissipation of Incompressible Shear Flow[J]. Applied Mathematics and Mechanics, 2010, 31(7): 772-780. doi: 10.3879/j.issn.1000-0887.2010.07.002
Citation: CHEN Bo, LI Xiao-wei, LIU Gao-lian. A Minimax Principle on Energy Dissipation of Incompressible Shear Flow[J]. Applied Mathematics and Mechanics, 2010, 31(7): 772-780. doi: 10.3879/j.issn.1000-0887.2010.07.002

一个关于流动能量耗散率的minimax变分原理

doi: 10.3879/j.issn.1000-0887.2010.07.002
基金项目: 国家自然科学基金资助项目(10772103);上海市重点学科建设项目资助(Y0103)
详细信息
    作者简介:

    陈波(1969- ),男,江苏人,讲师,博士(联系人.E-mail:bochen@shu.edu.cn).

  • 中图分类号: O357.1

A Minimax Principle on Energy Dissipation of Incompressible Shear Flow

  • 摘要: 流动耗散率是湍流理论的核心概念之一.Doering-Constantin变分原理刻画了流动耗散率的上确界(最大值).在该文的研究中,首先基于优化理论的视角,Doering-Constantin的变分原理被改写为一个不可压缩剪切流耗散率的minimax型的变分原理.其次,博弈论中的Kakutani minimax定理给出该变分原理中minimizing和maximizing计算过程可交换的一个充分条件.这个结果不仅从一个新的角度揭示了谱约束的内涵,也为Doering-Constantin变分原理和Howard-Busse统计理论的等价性从博弈论的角度提供了理论基础.
  • [1] Frisch U.Turbulence[M]. Cambridge: Cambridge University Press, 1995.
    [2] Wang X. Time averaged energy dissipation rate for shear driven flows in Rn[J].Physica D, 1997, 99(4): 555-563. doi: 10.1016/S0167-2789(96)00161-3
    [3] Nicodemus R, Grossmann S, Holthaus M. Variational bound on energy dissipation in plane Couette flow[J]. Phys Rev E, 1997, 56(6): 6774-6786. doi: 10.1103/PhysRevE.56.6774
    [4] Busse F H. The optimum theory of turbulence[J]. Adv Appl Mech, 1978, 18(1): 77-121.
    [5] Howard L N. Bounds on flow quantities[J]. Ann Rev Fluid Mech, 1972, 4(1): 473-494. doi: 10.1146/annurev.fl.04.010172.002353
    [6] Doering C, Constantin P. Energy dissipation in shear driven turbulence[J].Phys Rev Lett, 1992, 69(11): 1648-1651. doi: 10.1103/PhysRevLett.69.1648
    [7] Doering C, Constantin P.Variational bounds on energy dissipation in incompressible flows: shear flow[J]. Phys Rev E, 1994, 49(5): 4087-4099. doi: 10.1103/PhysRevE.49.4087
    [8] Doering C, Constantin P.Variational bounds on energy dissipation in incompressible flows—Ⅱ: channel flow[J]. Phys Rev E, 1995, 51(4): 3192-3198. doi: 10.1103/PhysRevE.51.3192
    [9] Doering C, Constantin P.Variational bounds on energy dissipation in incompressible flows—Ⅲ: convection[J].Phys Rev E, 1996, 53(6): 5957-5981. doi: 10.1103/PhysRevE.53.5957
    [10] Nicodemus R, Grossmann S, Holthaus M. Improved variational principle for bounds on energy dissipation in turbulent shear flow[J]. Physica D, 1997, 101(2): 178-190. doi: 10.1016/S0167-2789(96)00210-2
    [11] Kerswell R R.Variational bounds on shear-driven turbulence and turbulent Boussinesq convection[J]. Physica D, 1997, 100(3/4): 355-376. doi: 10.1016/S0167-2789(96)00227-8
    [12] Kerswell R R. Unification of variational principles for turbulent shear flows: the background method of Doering-Constantin and the mean fluctuation formulation of Howard-Busse[J]. Physica D, 1998, 121(2): 175-192. doi: 10.1016/S0167-2789(98)00104-3
    [13] Alexakis A, Doering C. Energy and Enstrophy Dissipation in Steady State 2D Turbulence[P]. arXiv: Physics/0605090v1, 2006.
    [14] Bowman J C, Doering C R, Eckhardt B, Davoudi J, Roberts M, Schumacher J.Links between dissipation, intermittency, and helicity in the GOY model revisited[J]. Physica D, 2006, 218(1): 1-10. doi: 10.1016/j.physd.2006.01.028
    [15] Chesdikov A, Doering C, Petrov N. Energy Dissipation in Fractal-Forced Flow[P]. arXiv: Physics/0607280v1, 2006.
    [16] Doering C, Eckhardt B, Schumacher J. Energy dissipation in body-forced plane shear flow[J]. J Fluid Mech, 2003, 494(1): 275-284. doi: 10.1017/S002211200300613X
    [17] Petrov N, Lu L, Doering C. Variational bounds on the energy dissipation rate in body-forced shear flow[J]. J Turbulence, 2005, 6(3): 211-234.
    [18] Bewley T R, Aamo O M. A ‘win-win’ mechanism for low-drag transients in controlled two-dimensional channel flow and its implications for sustained drag reduction[J]. J Fluid Mech, 2004, 499(1):183-196. doi: 10.1017/S0022112003006852
    [19] Landau L, Lifschitz E. Fluid Mechanics[M]. 2nd ed. New York: Pergamon Press, 1987.
    [20] Simons M. Minimax Theorems and Their Proofs[M].Du D-Z, Pardalos P M.Minimax and applications, 1-23, Dordrecht: Kluwer Academic Publishers, 1995.
    [21] 郭大钧. 非线性泛函分析[M]. 济南:山东科技出版社,1990.
  • 加载中
计量
  • 文章访问数:  2046
  • HTML全文浏览量:  217
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-05-28
  • 刊出日期:  2010-07-15

目录

    /

    返回文章
    返回