General Solution for a Class of Time Fractional Partial Differential Equation
-
摘要: 考虑一类时间分数阶偏微分方程,该方程包含几种特殊情况:时间分数阶扩散方程、时间分数阶反应-扩散方程、时间分数阶对流-扩散方程以及它们各自相对应的整数阶偏微分方程. 通过Laplace-Fourier变换及其逆变换,该方程在空间全平面和半平面内的基本解可以求出,但其表达式则是通过适当的变形来求.另外,对于有限域上的初边值问题,则可由Sine(Cosine)-Laplace变换导出该方程的一种级数形式的解,并通过两个数值例子来说明该方法的有效性.
-
关键词:
- 分数阶微分方程 /
- Caputo分数阶导数 /
- Green函数 /
- Laplace变换 /
- Fourier变换 /
- Sine(Cosine)变换
Abstract: A class of tmie fractional partial differential equation, including time fractional diffusion equation, tmie fractional reaction-diffusion equation, time fractional advection-diffusione-quation and their corresponding in teger-order partial differential equations, was considered. The fundam ental solutions for the Cauchy problem in a whole-space domain and signaling problem in a hal-fspace domain were obtained by using Fourier-Laplace trans forms and their inverse transforms. The appropriate structures for the Green functions were provided. On the other hand, the solutions in the form of a series for the in itial and boundary value p rob lem s in a bounded-space domain were derived by the Sine-Laplace or Cosine-Laplace transforms. Two examples were presented to show the application of the present technique. -
[1] Podlubny I.Fractional Differential Equations[M].San Diego: Academic Press, 1999. [2] Gorenflo R, Luchko Y, Mainardi F. Wright function as scale-invariant solutions of the diffusion-wave equation[J]. J Comp Appl Math, 2000, 118(1/2): 175-191. doi: 10.1016/S0377-0427(00)00288-0 [3] Mainardi F, Paradisi P, Gorenflo R.Probability distributions generated by fractional diffusion equations[C]Kertesz J, Kondor I. Econophysics: an Emerging Science.Dordrecht: Kluwer Academic Publishers, 1998. [4] Mainardi F, Luchko Y, Pagnini G.The fundamental solution of the space-time fractional diffusion equation[J].Fractional Calculus and Applied Analysis, 2001, 4(2):153-192. [5] Wyss W. The fractional diffusion equation[J]. J Math Phys, 1986, 27(11):2782-2785. doi: 10.1063/1.527251 [6] Chen J, Liu F, Anh V.Analytical solution for the time-fractional telegraph equation by the method of separating variables[J]. J Math Anal Appl, 2008, 338(2):1364-1377. doi: 10.1016/j.jmaa.2007.06.023 [7] Agrawal O P.Solution for a fractional diffusion-wave equation defined in a bounded domain[J]. Nonlinear Dynamics, 2002, 29(1/4):145-155. doi: 10.1023/A:1016539022492 [8] Gorenflo R, Mainardi F. Fractional calculus: integral and differential equations of fractional order[C]Carpinteri A, Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer,1997: 223-276. -
计量
- 文章访问数: 2715
- HTML全文浏览量: 319
- PDF下载量: 1108
- 被引次数: 0