[1] |
Barrett J W, Liu W B. Finite element error anaysis of a quasi-Newtonian flow obeying the Carreau or power law[J]. Numer Math, 1993,64(1): 433-453. doi: 10.1007/BF01388698
|
[2] |
Barrett J W, Liu W B. Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow[J]. Numer Math, 1994, 68(4): 437-456. doi: 10.1007/s002110050071
|
[3] |
Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem[J]. Numer Math,1988, 53(1/2): 225-235. doi: 10.1007/BF01395886
|
[4] |
Hansbo P, Szepessy A. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations[J]. Comp Meth Appl Mech Engrg, 1990, 84(2): 175-192. doi: 10.1016/0045-7825(90)90116-4
|
[5] |
Zhou T X, Feng M F. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J]. Math Comp, 1993, 60(202): 531-543. doi: 10.1090/S0025-5718-1993-1164127-6
|
[6] |
Zhou L, Zhou T X. Finite element method for a three-fields model for quasi-Newtonian flow[J]. Mathematica Numerica Sinica, 1997, 3: 305-312.
|
[7] |
Hughes T J R, Mazzei L, Oberai A A, Wray A A. The Multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence[J]. Phys Fluids, 2001,13(2): 505-512. doi: 10.1063/1.1332391
|
[8] |
Li J, He Y N. A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J]. J Comp Appl Math, 2008, 214(1): 58-65. doi: 10.1016/j.cam.2007.02.015
|
[9] |
Bochev P B, Dohrmann C R, Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM J Numer Anal, 2007,44(1): 82-101.
|
[10] |
Li J, He Y N, Chen Z X. A new stabilized finite element method for the transient Navier-Stokes equations[J]. Compu Meth Appl Mech Engrg, 2007,197(1/4): 22-35. doi: 10.1016/j.cma.2007.06.029
|
[11] |
He Y N, Li J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J]. Appl Numer Math, 2008, 58(10): 1503-1514. doi: 10.1016/j.apnum.2007.08.005
|
[12] |
Horgan C O. Korn’s inequalities and their applications in continuum mechanics[J]. SIAM Review, 1995, 37(4): 491-511. doi: 10.1137/1037123
|
[13] |
Mosolov P P, Myasnikov V P. A proof of Korn’s inequality[J]. Soviet Math Dokl, 1971,12: 1618-1622.
|
[14] |
Baranger J, Najib K. Analyse numérique des écoulements quasi-Newtoniens dont la viscosité-obéit la loi puissance ou la loi de Carreau[J]. Numer Math, 1990,58(1): 35-49. doi: 10.1007/BF01385609
|
[15] |
Berrone S, Süli E. Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows[J]. IMA J Numer Anal, 2008,28(2): 382-421.
|
[16] |
Dohrmann C R, Bochev P B. A stabilized finite element method for the Stokes problem based on polynomial pressure projections[J]. J Numer Meth in Fluids, 2004,46(2): 183-201. doi: 10.1002/fld.752
|
[17] |
Baranger J, Najib K, Sandri D. Numerical analysis of a three-fields model for a quasi-Newtonian flow[J]. Compu Meth Appl Mech Engrg, 1993,109(3/4): 281-292. doi: 10.1016/0045-7825(93)90082-9
|
[18] |
Mu J, Feng M F. Numerical analysis of an FEM for a transient viscoelastic flow[J]. Numerical Mathematics: A Journal of Chinese Universities,English Series, 2004, 13(2): 150-165.
|
[19] |
Zhou L, Zhou T X. Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows nonlinear model[J]. J Comp Appl Math, 1997,81(1): 19-28. doi: 10.1016/S0377-0427(97)00002-2
|
[20] |
Ge Z H, Feng M F, He Y N. A stabilized nonconfirming finite element method based on multiscale enrichment for the stationary Navier-Stokes equations[J]. Appl Math Comp, 2008, 202(2): 700-707. doi: 10.1016/j.amc.2008.03.016
|