Large Time Asymptotics for Solutions of a Nonhomogeneous Burgers Equation
-
摘要: 构造了非齐次Burgers方程的解,方程服从有界和紧致的初始曲线,作了一个有趣的探索.将热方程初值问题(L2(R,ex2/2)中有初值)的解,表示为该热方程自相似解的一个级数,Kloosterziel方法立即显示出该初值问题解的渐近性行为.受Kloosterziel方法的启发,根据热方程的自相似解,来表示非齐次Burgers方程的解.最后得到该非齐次Burgers方程解的渐近性特征.
-
关键词:
- 非齐次Burgers方程 /
- Hermite多项式 /
- 自相似解
Abstract: Solutions of a nonhomogeneous Burgers equation subject to bounded and compactly supported initial profiles were constructed.In an interesting study,Kloosterziel(Kloosterziel R C.J Engrg Math,1990, 24(3):213-236)represented the solution of an initial value problem(IVP)for the heat equation,with initial data in(L2(R,ex2/2),as a series of the self-similar solutions of the heat equation.This approach quickly revealed the large time behaviour for the solution of the IVP.Inspired by Kloosterziel's approach, the solution of the nonhomogeneous Burgers equation in terms of the self-similar solutions of the heat equation was expressed.Finally,the large time behaviour of the solutions of the nonhomogeneous Burgers equation is obtained. -
[1] Ablowitz M J, De Lillo S. The Burgers equation under deterministic and stochastic forcing [J]. Physica D, 1996, 92(3/4):245-259. doi: 10.1016/0167-2789(95)00274-X [2] Balogh A, Gilliam D S, Shubov V I. Stationary solutions for a boundary controlled Burgers’equation [J]. Math Comput Model, 2001, 33(1/3): 21-37. doi: 10.1016/S0895-7177(00)00226-0 [3] Gao Y T, Xu X G, Tian B. Variable-coefficient forced Burgers system in nonlinear fluid mechanics and its possibly observable effects[J]. Int J Mod Phys C, 2003, 14(9): 1207-1222. doi: 10.1142/S0129183103005340 [4] Gurarie V, Migdal A. Instantons in the Burgers equation[J]. Phys Rev E, 1996, 54(5):4908-4914. doi: 10.1103/PhysRevE.54.4908 [5] Xu T, Zhang C-Y, Li J, Meng X-H, Zhu H-W, Tian B. Symbolic computation on generalized Hopf-Cole transformation for a forced Burgers model with variable coefficients from fluid dynamics[J]. Wave Motion, 2007, 44(4): 262-270. doi: 10.1016/j.wavemoti.2006.10.004 [6] Kloosterziel R C. On the large-time asymptotics of the diffusion equation on infinite domains[J]. J Engrg Math, 1990, 24(3): 213-236. doi: 10.1007/BF00058467 [7] Higgins J R. Completeness and Basic Properties of Sets of Special Functions[M]. Cambridge:Cambridge University Press, 1977. [8] Ding X-Q, Jiu Q-S, He C. On a nonhomogeneous Burgers’equation[J]. Sci China Ser A, 2001, 44(8): 984-993. doi: 10.1007/BF02878974 [9] Rao C S, Yadav M K. Solutions of a nonhomogeneous Burgers equation[J]. Stud Appl Math, 2010, 124(4): 411-422. doi: 10.1111/j.1467-9590.2009.00478.x [10] Polyanin A D. Handbook of Linear Partial Differential Equations for Engineers and Scientists[M].New York:Chapman & Hall/CRC, 2002. -
计量
- 文章访问数: 1459
- HTML全文浏览量: 141
- PDF下载量: 704
- 被引次数: 0