Asymptotic and Other Estimates for a Semilinear Parabolic Problem in a Semi-Infinite Cylinder
-
摘要: 就变截面的半无限圆柱体,当横向边界值为0时,研究半线性抛物线型方程的初边值问题解的空间衰减.对其解的一个L2p横截面量,导出的2阶微分不等式表明,空间衰减呈O(exp-z2/).同时导出了引起增长或衰减的1阶微分不等式.在爆破空间中得到增长情况下的上界,当衰减情况时,根据已知的数据,得到总能量的上界.Abstract: The spatial decay of solutions to initial-boundary value problems for a semilinear parabolic equation in a semi-infinite cylinder of variable cross-section subject to zero condition on the lateral boundaries was investigated.A second-order differential inequality that was to show the spatial decay O(exp{-z2/[4(t+t0)]}) for an L2p cross-sectional measure of the solution was obtained.A first-order differential inequality leading to growth or decay was derived.In the case of growth an upper bound for blow-up in space was obtained while in the case of decay an upper bound for the total energy in terms of data was obtained.
-
Key words:
- spatial decay bound /
- differential inequality /
- decay rate
-
[1] Boley B A. Upper bounds and Saint-Venant’s principle in transient heat conduction[J]. Quart Appl Math, 1960, 18: 205-207. [2] Flavin J N, Knops R J, Payne L E. Asympotic and other estimates for a semilinear elliptic equation in a cylinder[J]. Q JI Mech Appl Math, 1992, 45(4): 618-627. [3] LIN Chang-hao, Payne L E. A Phragmén-Lindelf alternative for a class of quasilinear second order parabolic problems[J]. Differential and Integral Equations, 1995, 8(3): 539-551. [4] Payne P E, Schaefer P W, Song J C. Growth and decay results in heat conduction problems with nonlinear boundary conditions[J]. Nonlinear Analysis, 1999, 35(2): 269-286. doi: 10.1016/S0362-546X(98)00034-0 [5] Payne P E, Song J C. Spatial decay results in a cross-diffusion problem[J]. IMA Journal of Applied Mathematics, 2007, 72: 854-864. doi: 10.1093/imamat/hxm055 [6] Horgan C O, Knowles J K. Recent developments concerning Saint-Venant’s principle[J]. Adv Appl Mech, 1983, 23: 79-269. [7] Horgan C O. Recent developments concerning Saint-Venant’s principle: an update[J]. Appl Mech Rev, 1989, 42: 295-303. doi: 10.1115/1.3152414 [8] Horgan C O. Recent developments concerning Saint-Venant’s principle: a second update[J]. Appl Mech Rev, 1996, 49: 101-111. doi: 10.1115/1.3101961 -
计量
- 文章访问数: 1661
- HTML全文浏览量: 191
- PDF下载量: 749
- 被引次数: 0