[1] |
Egolf T. Recent rotor wake simulation and modeling studies at United Technologies Corporation[R]. AIAA paper 2000-115, 2000.
|
[2] |
He C, Zhao J. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915. doi: 10.2514/1.36466
|
[3] |
Harris R E, Sheta E F, Habchi S D. An efficient adaptive Cartesian vorticity transport solver for rotorcraft flowfield analysis[R]. AIAA paper 2010-1072, 2010.
|
[4] |
Wagner S. On the numerical prediction of rotor wakes using linear and non-linear methods[R]. AIAA paper 2000-0111, 2000.
|
[5] |
Dietz M, Keler M, Kramer E, Wagner S. Tip vortex conservation on a helicopter main rotor using vortex-adapted chimera grids[J]. AIAA Journal, 2007, 45(8): 2062-2074. doi: 10.2514/1.28643
|
[6] |
Caradonna F X, Directorate A, Aviation U S, Command M. Developments and challenges in rotorcraft aerodynamics[R]. AIAA paper 2000-0109, 2000.
|
[7] |
Hariharan N, Sankar L N. High-order essentially nonoscillatory schemes for rotary-wing wake computations[J]. Journal of Aircraft, 2004, 41(2): 258-267. doi: 10.2514/1.9320
|
[8] |
Hariharan N. High order accurate numerical convection of vortices across overset interfaces[R]. AIAA paper 2005-1263, 2005.
|
[9] |
Usta E, Wake B E, Egolf T A, Sankar L N. Application of a symmetric total variation diminishing scheme to aerodynamics and aeroacoustics of rotors[C]Presented at the American Helicopter Society 57th Annual Forum. Washington D C, May 9-11, 2001.
|
[10] |
Kim H, Williams M, Lyrintzis A. Improved method for rotor wake capturing[J]. Journal of Aircraft, 2002, 39(5): 794-803. doi: 10.2514/2.3025
|
[11] |
Borges R, Carmona M, Costa B, Don W S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211. doi: 10.1016/j.jcp.2007.11.038
|
[12] |
Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
|
[13] |
Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
|
[14] |
Yoon S, Jameson A. Lower-upper symmetric Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1998, 26(9): 1025-1026.
|
[15] |
Chen R, Wang Z. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12): 2238-2245. doi: 10.2514/2.914
|
[16] |
Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flow[R]. AIAA paper 78-0257, 1978.
|
[17] |
Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5
|
[18] |
Chen X, Zha G C, Yang M T. Numerical simulation of 3-D wing flutter with fully coupled fluidstructural interaction[J]. Computers and Fluids, 2007, 36(5): 856-867. doi: 10.1016/j.compfluid.2006.08.005
|
[19] |
Harten A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3): 357-393. doi: 10.1016/0021-9991(83)90136-5
|
[20] |
Xu L, Yang A M, Guang P, Weng P F. Numerical experiments using one high-resolution scheme for unsteady inviscid compressible flows[J]. Acta Aerodynamica Sinica, 2009, 27(5): 602-607.
|
[21] |
Titarev V A, Toro E F. WENO schemes based on upwind and centred TVD fluxes[J]. Computers and Fluids, 2005, 34(6): 705-720. doi: 10.1016/j.compfluid.2004.05.009
|
[22] |
Caradonna F X, Tung C. Experimental and analytical studies of a model helicopter rotor in hover[R]. NASA TM 81232, 1981.
|
[23] |
Strawn R C, Barth T J. A finite-volume Euler solver for computing rotary-wing aerodynamics on unstructured meshes[J]. Journal of the American Helicopter Society, 1993, 38: 61-67. doi: 10.4050/JAHS.38.61
|