[1] |
Ovsiannikov L V. Group Analysis of Differential Equations[M]. New York: Academic Press, 1982.
|
[2] |
Olver P J. Applications of Lie group to differential equations[C]Graduate Text Maths, Vol 107. New York: Springer, 1986.
|
[3] |
LIU Na, LIU Xi-qiang, L Hai-ling. New exact solutions and conservation laws of the (2+1)-dimensional dispersive long wave equations[J]. Phys Lett A, 2009, 373: 214-220. doi: 10.1016/j.physleta.2008.11.007
|
[4] |
Ibragimov N H, Kara A H, Mahomed F M. Lie-Bcklund and Noether symmetries with applications[J]. Nonlinear Dynam, 1998, 15(2): 115-136. doi: 10.1023/A:1008240112483
|
[5] |
Yasar Emrullah, zer Teoman. Conservation laws for one-layer shallow water waves systems[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4): 838-848. doi: 10.1016/j.nonrwa.2009.01.028
|
[6] |
梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京:科学出版社,1999.(MEI Feng-xiang. Applications of Lie Groups and Lie Algebraic to Constraint Mechanical Systems[M]. Beijing: Science Press, 1999.(in Chinese))
|
[7] |
Bluman G W, Reid G J, Kumei S. New classes of symmetries for partial differential equations[J]. Journal of Mathematical Physics, 1988, 29: 806-811. doi: 10.1063/1.527974
|
[8] |
Khater A H, Callebaut D K, Abdul-Aziz S F, Abdelhameed T N. Potential symmetry and invariant solutions of Fokker-Planck equation modelling magnetic field diffusion in magnetohydrodynamics including the Hall current[J]. Physica A, 2004, 341: 107-122. doi: 10.1016/j.physa.2004.04.118
|
[9] |
Bluman G W, Cheviakov A F, Anco S C. Applications of Symmetry Methods to Partial Differential Equations[M]. New York: Springer, 2010.
|
[10] |
Noether E. Invariante variations probleme[J]. Math Phys Kl Heft, 1918, 2: 235-257. (English translation in Transport Theory Statist Phys, 1971, 1(3): 186-207.)
|
[11] |
Bessel-Hagen E. ber die Erhaltungsstzeder der Elektrodynamik[J]. Math Ann, 1921, 84(3/4): 258-276. doi: 10.1007/BF01459410
|
[12] |
FU Jing-li, CHEN Li-qun, CHEN Ben-yong. Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices[J].Science China: Physics, Mechanics & Astronomy, 2010, 53(3): 545-554.
|
[13] |
FU Jing-li, FU Hao, LIU Rong-wan. Hojman conserved quantities of discrete mechanico—electrical systems constructed by continuous symmetries[J]. Physics Letters A, 2010, 374(17/18): 1812-1818. doi: 10.1016/j.physleta.2010.02.046
|
[14] |
FU Jing-li, CHEN Li-qun, Jimenez Salnalor, TANG Yi-fa. Non-Noether symmetries and Lutzky conserved quantities for mechanico-electrical systems[J]. Physics Letters A, 2006, 358(1): 5-10. doi: 10.1016/j.physleta.2006.04.097
|
[15] |
Ibragimov N H. CRC Handbook of Lie Group Analysis of Differential Equations[M]. Vol 1. Boca Raton, Florida: CRC Press, 1994.
|
[16] |
Khalique C M, Mahomed F M. Conservation laws for equations related to soil water equations[J]. Math Probl Engin, 2005, 26(1): 141-150.
|
[17] |
Kara A H, Mahomed F M. Noether-type symmetries and conservation laws viapartial Lagrangians[J]. Nonlinear Dynam, 2006, 45: 367-383. doi: 10.1007/s11071-005-9013-9
|
[18] |
Johnpillai A G, Kara A H, Mahomed F M. Conservation laws of a nonlinear (1+1) wave equation[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4): 2237-2242. doi: 10.1016/j.nonrwa.2009.06.013
|
[19] |
Bokhari A H, Al-Dweik A Y, Mahomed F M, Zaman F D. Conservation laws of a nonlinear (n+1) wave equation[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4): 2862-2870. doi: 10.1016/j.nonrwa.2009.10.009
|
[20] |
秦荗昌,梅凤翔,许学军. 热方程的非古典势对称群与不变解[J]. 应用数学和力学, 2006, 27(2):217-222. (QIN Mao-chang, MEI Feng-xiang, XU Xue-jun. Nonclassical potential symmetries and invariant solutions of the heat equation[J]. Applied Mathematics and Mechanics(English Edition), 2006, 27(2): 247-253.)
|
[21] |
Bluman T G W, Sahadevan R. Local and nonlocal symmetries for nonlinear telegraph equations[J]. J Math Phys, 2005, 46(2), 023505.
|