[1] |
Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland, 1978.
|
[2] |
Apel T, Dobrowolski M. Anisotropic interpolation with applications to the finite element method[J]. Computing, 1992, 47(2/3): 277-293.
|
[3] |
Apel T. Anisotropic Finite Elements: Local Estimates and Applications[M]. Stuttgart, Leipzig: B G Teubner, 1999.
|
[4] |
Chen S C, Shi D Y, Zhao Y C. Anisotropic interpolations and quasi-Wilson element for narrow quadrilateral meshes[J]. IMA Journal of Numerical Analysis, 2004, 24(1): 77-95.
|
[5] |
Chen S C, Zhao Y C, Shi D Y. Anisotropic interpolations with application to nonconforming elements[J]. Applied Numerical Mathematics, 2004, 49: 135-152.
|
[6] |
石东洋, 梁慧. 各向异性网格下Wilson元的超收敛分析[J]. 应用数学和力学, 2007, 28(1): 107-113.(SHI Dong-yang, LIANG Hui. Superconvergence analysis of Wilson element on anisotropic meshes[J].Applied Mathematics and Mechanics(English Edition), 2007, 28(1): 119-125.)
|
[7] |
Chen S C, Shi D Y. Accuracy analysis for quasi-Wilson element[J]. Acta Mathematica Scientia B, 2000, 20(1): 44-48.
|
[8] |
Shi D Y, Chen S C, Hagiwara I. Convergence analysis for a nonconforming membrane element on anisotropic meshes[J]. Journal of Computational Mathematics, 2005, 23(4): 373-382.
|
[9] |
Shi D Y, Liang H, Wang C X. Superconvergence analysis of a nonconforming triangular element on anisotropic meshes[J]. Journal of Systems Science and Complexity, 2007, 20(4): 536-544.
|
[10] |
Apel T, Nicaise S, Schberl J. Crouzeix-Raviart type finite elements on anisotropic meshes[J]. Numerische Mathematik, 2001, 89(2): 193-223.
|
[11] |
Lin Q, Lutz T, Zhou A H. Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation[J]. IMA Journal of Numerical Analysis, 2005, 25(1): 160-181.
|
[12] |
Shi D Y, Mao S P, Chen S C. Anisotropic nonconforming finite element with some superconvergence results[J]. Journal of Computational Mathematics, 2005, 23(3): 261-274.
|
[13] |
Shi D Y, Pei L F. Low order Crouzeix-Raviart type nonconforming finite element methods for approximating Maxwell’s equations[J]. International Journal of Numerical Analysis and Modeling, 2008, 5(3): 373-385.
|
[14] |
Shi D Y, Mao S P, Chen S C. A locking-free anisotropic nonconforming rectangular finite element for planar linear elasticity problems[J]. Acta Mathematica Scientia, B, 2007, 27(1): 193-202.
|
[15] |
Shi D Y, Wang H H. An anisotropic nonconforming finite element method for approximating a class of nonlinear Sobolev equations[J]. Journal of Computational Mathematics, 2009, 27(2/3):299-314.
|
[16] |
Shi D Y, Ren J C. Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes[J]. Nonlinear Analysis: Theory, Methods and Applications, 2009, 71(9):3842-3852.
|
[17] |
Shi D Y, Guan H B. A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes[J].Hokkaido Mathematical Journal, 2007, 36(4): 687-709.
|
[18] |
Shi D Y, Ren J C, Hao X B. A new second order nonconforming mixed finite element scheme for the stationary Stokes and Navier-Stokes equations[J]. Applied Mathematics and Computation, 2009, 207(2): 462-477.
|
[19] |
Shi D Y, Liang H. Convergence and superconvergence analysis of a new quadratic Hermite-type triangular element on anisotropic meshes[J]. Applied Mathematics and Computation, 2009, 212(1): 257-269.
|
[20] |
Shi D Y, Xie P L. Morley type non-C0 nonconforming rectangular plate finite elements on anisotropic meshes[J]. Numerical Methods for Partial Differential Equations, 2010, 26(3): 723-744.
|
[21] |
Shi D Y, Wang X L. Two low order characteristic finite element methods for a convection-dominated transport problem[J]. Computers and Mathematics With Applications, 2010, 59(12): 3630-3639.
|