[1] |
Wiggins S. Global Bifurcations and Chaos-Analytical Methods[M]. Berlin, New York: Springer-Verlag, 1988.
|
[2] |
Kovacic G, Wiggins S. Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation[J]. Physica D, 1992, 57(1/2):185-225.
|
[3] |
Kaper T J, Kovacic G. Multi-bump orbits homoclinic to resonance bands[J]. Transactions of the American Mathematical Society, 1996, 348(10):3835-3887.
|
[4] |
Camassa R, Kovacic G, Tin S K. A Melnikov method for homoclinic orbits with many pulse[J]. Archive for Rational Mechanics and Analysis, 1998, 143(2):105-193.
|
[5] |
Haller G, Wiggins S. Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrdinger equation[J]. Physica D, 1995, 85(3):311-347.
|
[6] |
Haller G. Chaos Near Resonance[M]. Berlin, New York: Springer-Verlag, 1999.
|
[7] |
Hadian J, Nayfeh A H. Modal interaction in circular plates[J]. Journal of Sound and Vibration, 1990, 142(2):279-292.
|
[8] |
Yang X L, Sethna P R. Local and global bifurcations in parametrically excited vibrations nearly square plates[J]. International Journal of Non-Linear Mechanics, 1991, 26(2):199-220.
|
[9] |
Yang X L, Sethna P R. Non-linear phenomena in forced vibrations of a nearly square plate: antisymmetric case[J]. Journal of Sound and Vibration, 1992, 155(3):413-441.
|
[10] |
Feng Z C, Sethna P R. Global bifurcations in the motion of parametrically excited thin plate[J]. Nonliner Dynamics, 1993, 4(4):389-408.
|
[11] |
Chang S I, Bajaj A K, Krousgrill C M. Nonlinear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance[J]. Nonlinear Dynamics, 1993, 4(5):433-460.
|
[12] |
Abe A, Kobayashi Y, Yamada G. Two-mode response of simply supported, rectangular laminated plates[J]. International Journal of Non-Linear Mechanics, 1998, 33(4):675-690.
|
[13] |
Zhang W, Liu Z M, Yu P. Global dynamics of a parametrically and externally excited thin plate[J]. Nonlinear Dynamics, 2001, 24(3):245-268.
|
[14] |
Zhang W. Global and chaotic dynamics for a parametrically excited thin plate[J]. Journal of Sound and Vibration, 2001, 239(5):1013-1036.
|
[15] |
Anlas G, Elbeyli O. Nonlinear vibrations of a simply supported rectangular metallic plate subjected to transverse harmonic excitation in the presence of a one-to-one internal resonance[J]. Nonlinear Dynamics, 2002, 30(1):1-28.
|
[16] |
Zhang W, Song C Z, Ye M. Further studies on nonlinear oscillations and chaos of a symmetric cross-ply laminated thin plate under parametric excitation[J]. International Journal of Bifurcation and Chaos, 2006, 16(2):325-347.
|
[17] |
Zhang W, Yang J, Hao Y X. Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory.[J] Nonlinear Dynamics, 2010, 59(4):619-660.
|
[18] |
Yu W Q, Chen F Q. Global bifurcations of a simply supported rectangular metallic plate subjected to a transverse harmonic excitation[J]. Nonlinear Dynamics, 2010, 59(1/2):129-141.
|
[19] |
Li S B, Zhang W, Hao Y X. Multi-pulse chaotic dynamics of a functionally graded material rectangular plate with one-to-one internal resonance[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(5):351-362.
|
[20] |
Zhang W, Li S B. Resonant chaotic motions of a buckled rectangular thin plate with parametrically and externally excitations[J]. Nonlinear Dynamics, 2010, 62(3):673-686.
|
[21] |
Chia C Y. Non-Linear Analysis of Plate[M]. McMraw-Hill Inc. 1980.
|
[22] |
Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells[M]. New York: McGraw-Hill, 1959.
|
[23] |
Nayfeh A H, Mook D T. Nonlinear Oscillations[M]. New York: Wiley-Interscience, 1979.
|