[1] |
Betti E. Teoria Della elasticita’[J].Nuovo Cimento,1872,7/8(1): 69-97.
|
[2] |
付宝连. 关于功的互等定理与叠加原理的等价性[J]. 应用数学和力学, 1985,6(9): 813-818.(FU Bao-lian. On equivalent of the reciprocal theorem to superposition principles[J].Applied Mathematics and Mechanics,1985,6(9): 813-818.(in Chinese))
|
[3] |
付宝连. 广义倒易定理及其应用[J]. 应用数学和力学, 2002,23(2): 188-194.(FU Bao-lian. Generalized reciprocal theorem and its applications[J].Applied Mathematics and Mechanics,2002,23(2): 188-194.(in Chinese))
|
[4] |
付宝连. 应用功的互等定理求解具有复杂边界条件的矩形板的挠曲面方程[J]. 应用数学和力学, 1982,3(3): 315-325.(FU Bao-lian. Applications of reciprocal theorem to solving the equations of deflection surface of rectangular plates with various edge conditions[J].Applied Mathematics and Mechanics,1982,3(3): 315-325.(in Chinese))
|
[5] |
付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅰ)——四边固定的矩形板和三边固定的矩形板[J]. 应用数学和力学, 1989,10(8): 693-714.(FU Bao-lian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates(Ⅰ)—rectangular plates with four clamped edges and with three clamped edges[J]. Applied Mathematics and Mechanics,1989, 1〖STHZ〗0(8): 693-714.(in Chinese))
|
[6] |
付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅱ)——两邻边固定的矩形板[J]. 应用数学和力学, 1990,11(11): 977-988.(FU Bao-lian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates(Ⅱ)—rectangular plates with two adjacent clamped edges[J].Applied Mathematics and Mechanics,1990,11(11): 977-988.(in Chinese))
|
[7] |
付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅲ)——悬臂矩形板[J]. 应用数学和力学, 1991,12(7): 613-620.(FU Bao-lian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates(Ⅲ)—cantilever rectangular plates[J].Applied Mathematics and Mechanics,1991,12(7): 613-620.(in Chinese))
|
[8] |
付宝连. 应用功的互等定理法求立方体的位移解[J]. 应用数学和力学, 1989,10(4): 297-308.(FU Bao-lian. Application of the method of the reciprocal theorem to finding displacement solutions of cubes[J].Applied Mathematics and Mechanics,1989,10(4): 297-308.(in Chinese))
|
[9] |
付宝连. 关于求解弹性力学平面问题的功的互等定理法[J]. 应用数学和力学, 1989,10(5): 437-446.(FU Bao-lian. On the method of reciprocal theorem to finding solutions of the plane problems of elasticity[J].Applied Mathematics and Mechanics,1989,10(5): 437-446.(in Chinese))
|
[10] |
付宝连. 弯曲薄板的修正的功的互等定理及其应用[J]. 应用数学和力学, 2014,35(11): 1197-1209.(FU Bao-lian. Corrected reciprocal theorem of works for bending thin plates and its application[J].Applied Mathematics and Mechanics,2014,35(11): 1197-1209.(in Chinese))
|
[11] |
Love A E H.Treatise on the Mathematical Theory of Elasticity [M]. 4th ed. New York: Dover Publication, 1944.
|
[12] |
Timoshenko S P, Goodier J N.Theory of Elasticity [M]. 3rd ed. McGraw-Hill Book Company, 1970.
|
[13] |
钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.(ZHONG Wan-xie.A New Systematic Methodology for Theory of Elasticity [M]. Dalian: Dalian University of Technology Press, 1995.(in Chinese))
|
[14] |
钱伟长, 叶开沅. 弹性力学[M]. 北京: 科学出版社, 1980.(CHIEN Wei-zang, YEH Kai-yuan.Mechanics of Elasticity [M]. Beijing: Science Press, 1980.(in Chinese))
|
[15] |
付宝连. 弯曲薄板功的互等新理论[M]. 北京: 科学出版社, 2003.(FU Bao-lian.New Theory of the Reciprocal Theorem of Bending of Thin Plates [M]. Beijing: Science Press, 2003.(in Chinese))
|
[16] |
付宝连. 弹性力学混合变量的变分原理及其应用[M]. 北京: 国防工业出版社, 2010.(FU Bao-lian.Variational Principles With Mixed Variables in Elasticity and Their Applications[M]. Beijing: National Defense Industry Press, 2010.(in Chinese))
|