Lü Shuaishuai, WANG Binwen, YANG Yu. Optimal Design of Flexible Skin on the Leading Edge of a 3D Variable-Camber Wing[J]. Applied Mathematics and Mechanics, 2020, 41(6): 604-614. doi: 10.21656/1000-0887.400384
Citation: Lü Shuaishuai, WANG Binwen, YANG Yu. Optimal Design of Flexible Skin on the Leading Edge of a 3D Variable-Camber Wing[J]. Applied Mathematics and Mechanics, 2020, 41(6): 604-614. doi: 10.21656/1000-0887.400384

Optimal Design of Flexible Skin on the Leading Edge of a 3D Variable-Camber Wing

doi: 10.21656/1000-0887.400384
  • Received Date: 2019-12-27
  • Rev Recd Date: 2020-02-18
  • Publish Date: 2020-06-01
  • The smooth continuous wing leading edge with variable cambers has the advantages of reduced noise and improved aerodynamic efficiency. Based on the 2D airfoil flexible skin design method, a design method for flexible skin on the variable-curvature leading edge of a swept-back airfoil was proposed. The main improvement lies in the synchronous optimization of multiple airfoil profiles along the wingspan direction, the modification of the objective function to solve the deformation problem, and the modification of NSGA-II with the elite strategy to adapt to the multi-objective optimization of 3D skin. The research shows that, compared with the existing design method, this method can improve the deformation accuracy of the flexible skin by 27% and realize the accurate shape of the flexible skin in the drooping state.
  • loading
  • [1]
    KRETH S, KNIG R, WILD J. Aircraft noise determination of novel wing configurations[C]// Inter-Noise.Istanbul, Türkei, 2007.
    [2]
    黄杰, 葛文杰, 杨方. 实现机翼前缘形状连续变化柔性机构的拓扑优化[J]. 航空学报, 2007,29(7): 988-992.(HUANG Jie, GE Wenjie, YANG Fang. Topology optimization of the compliant mechanism for shape change of airfoil leading edge[J]. Acta Aeronautica et Astronautica Sinica,2007,29(7): 988-992.(in Chinese))
    [3]
    杨智春, 党会学, 解江. 基于动网格技术的柔性后缘自适应机翼气动特性分析[J]. 应用力学学报, 2009,26(3): 548-553.(YANG Zhichun, DANG Huixue, XIE Jiang. Aerodynamic characteristics of flexible trailing edge adaptive wing by unstructured dynamic meshes[J]. Chinese Journal of Applied Mechanics,2009,26(3): 548-553.(in Chinese))
    [4]
    邹森, 刘勇, 王琦. 翼涡干扰前缘开孔被动控制数值研究[J]. 应用数学和力学, 2019,40(10): 1159-1168.(ZOU Sen, LIU Yong, WANG Qi. Numerical study on passive control of wing vortex interference front opening[J]. Applied Mathematics and Mechanics,2019,40(10): 1159-1168.(in Chinese))
    [5]
    SATTI R, LI Y, SHOCK R, et al. Computational aeroacoustic analysis of a high-lift configuration[C]// 〖STBX〗46th AIAA Aerospace Sciences Meeting and Exhibit.Reno Nevada, USA, 2008: 654-681.
    [6]
    PECORA R, MAGNIFICO M, AMOROSO F, et al. Structural design of an adaptive wing trailing edge for large aeroplanes[C]//WLCKEN P C, PAPADOPOULOS M, eds. Smart Intelligent Aircraft Structures. Switzerland: Springer, 2016: 159-170.
    [7]
    KINTSCHER M, WIEDEMANN M, MONNER H P, et al. Design of a smart leading edge device for low speed wind tunnel tests in the European project SADE[J].International Journal of Structural Integrity,2011,2(4): 383-405.
    [8]
    RUDENKO A, RADESTOCK M, MONNER H P. Optimization, design and structural testing of a high deformable morphing leading edge of an active blown high lift system[C]//24th AIAA/AHS Adaptive Structures Conference.San Diego, California, USA, 2016.
    [9]
    VASISTA S, GASPARI A D, RICCI S, et al. Compliant structures-based wing and wingtip morphing devices[J]. Aircraft Engineering and Aerospace Technology,2016,88(5): 210-228.
    [10]
    KINTSCHER M, GEIER S, MONNER H P, et al. Investigation of multi-material laminates for smart droop nose devices[C]//29th Congress of the International Council of the Aeronautical Sciences.St Petersburg, Russia, 2014.
    [11]
    WANG Z G, YANG Y, SUN X S. Structural optimization of a variable camber leading edge[C]// 1st EU-China Aeronautical Cooperation Workshop: INNOVATE.Glasgow, UK, 2018: 20-31.
    [12]
    王珑,王同光,罗源. 改进的NSGA-Ⅱ算法研究风力机叶片多目标优化[J]. 应用数学和力学, 2011,32(6): 693-701.(WANG Long, WANG Tongguang, LUO Yuan. Improved non-dominated sorting genetic algorithm (NSGA)-Ⅱ in multi-objective optimization studies of wind turbine blades[J]. Applied Mathematics and Mechanics,2011,32(6): 693-701.(in Chinese))
    [13]
    DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-Ⅱ[M]// Parallel Problem Solving From Nature PPSN VI.Springer, 2000: 849-858.
    [14]
    LI Shuguang. Rigidities of one-dimensional laminates of composite materials[J]. Journal of Engineering Mechanics,1996,122(4): 371.
    [15]
    CARRERA E, PAGANI A. Multi-line enhanced beam model for the analysis of laminated composite structures[J]. Composites Part B,2014,57(3): 112-119.
    [16]
    VINSON J R, SIERAKOWSKI R L. The behavior of structures composed of composite materials[J]. Journal of Applied Mechanics,2002,105: 215-258.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (937) PDF downloads(232) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return