Volume 44 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
ZHAO Yi, TIAN Xiaogeng. Thermomechanical Responses of YSZ Under Ultrashort Thermal Shock Based on the L-S Generalized Thermoelastic Theory[J]. Applied Mathematics and Mechanics, 2023, 44(7): 784-796. doi: 10.21656/1000-0887.430134
Citation: ZHAO Yi, TIAN Xiaogeng. Thermomechanical Responses of YSZ Under Ultrashort Thermal Shock Based on the L-S Generalized Thermoelastic Theory[J]. Applied Mathematics and Mechanics, 2023, 44(7): 784-796. doi: 10.21656/1000-0887.430134

Thermomechanical Responses of YSZ Under Ultrashort Thermal Shock Based on the L-S Generalized Thermoelastic Theory

doi: 10.21656/1000-0887.430134
  • Received Date: 2022-04-14
  • Rev Recd Date: 2022-07-06
  • Publish Date: 2023-07-01
  • Based on the L-S generalized thermoelastic theory and in view of the specific heat capacity change of material with temperature, the control equations for the thermoelastic coupling system with internal heating source were established. The thermomechanical responses of yttrium tetragonal zirconia (YSZ) under the action of ultrashort pulse laser were studied by means of the finite element method. The effects of the specific heat capacity change with temperature, and the pulse width of the laser on the thermomechanical responses and the mechanical wave reflections in material were obtained. The results show that, under repeated pulse laser actions, the stress and displacement of the material will undergo fluctuations, and the mechanical response will be more sensitive to heating than the thermal response. The specific heat capacity change with temperature will result in the decrease of the thermal response. The study provides an important guidance for improving the ultrashort pulse laser machining quality.
  • loading
  • [1]
    杜洋, 赵凯, 朱忠良, 等. 超快激光精密制造技术的研究与应用[J]. 激光与红外, 2020, 50(12): 1419-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012002.htm

    DU Yang, ZHAO Kai, ZHU Zhongliang, et al. Research and application of ultrafast laser precision manufacturing technology[J]. Laser & Infrared, 2020, 50(12): 1419-1425. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012002.htm
    [2]
    温嵘, 王琦, 李璇, 等. 超快激光加工技术在航空发动机制造中的应用[J]. 电加工与模具, 2020, 55(6): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DJGU202006011.htm

    WEN Rong, WANG Qi, LI Xuan, et al. Application of ultrafast laser machining technology in aero-engine manufacturing[J]. Electric Machining and Touch Tools, 2020, 55(6): 56-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJGU202006011.htm
    [3]
    PHILLIPS K C, GANDHI H H, MAZUR E, et al. Ultrafast laser processing of materials: a review[J]. Advances in Optics and Photonics, 2015, 7(4): 684-712. doi: 10.1364/AOP.7.000684
    [4]
    周可平, 何林美, 赵晓梅, 等. 飞秒激光新技术的应用研究[J]. 航空精密制造技术, 2020, 56(6): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ202006009.htm

    ZHOU Keping, HE Linmei, ZHAO Xiaomei, et al. Application of femtosecond laser technology[J]. Aviation Precision Manufacturing Technology, 2020, 56(6): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ202006009.htm
    [5]
    SHEN H, FENG D. Thermal and mechanical behavior in laser trepan drilling of yttria-stabilized zirconia[J]. Journal of Heat Transfer, 2019, 141(4): 042101. doi: 10.1115/1.4042778
    [6]
    秦渊, 毕娟, 倪晓武, 等. 毫秒激光金属打孔的解析和实验[J]. 光学精密工程, 2011, 19(2): 340-347. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201102018.htm

    QIN Yuan, BI Juan, NI Xiaowu, et al. Analysis and experiment of metal drilling by millisecond laser[J]. Optics and Precision Engineering, 2011, 19(2): 340-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201102018.htm
    [7]
    赵万芹, 梅雪松, 王文君. 超短脉冲激光微孔加工(上): 理论研究[J]. 红外与激光工程, 2019, 48(1): 140-148. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201902019.htm

    ZHAO Wanqin, MEI Xuesong, WANG Wenjun. Ultra-short pulse laser microhole machining (part Ⅰ): theoretical study[J]. Infrared and Laser Engineering, 2019, 48(1): 140-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201902019.htm
    [8]
    CHENG J, LIU C S, SHANG S, et al. A review of ultrafast laser materials micromachining[J]. Optics and Laser Technology, 2013, 46(1): 88-102.
    [9]
    RAHAMAN A, DU X, ZHOU B, et al. Absorption and temperature distribution during ultrafast laser microcutting of polymeric materials[J]. Journal of Laser Applications, 2020, 32(2): 022044. doi: 10.2351/7.0000080
    [10]
    RAHAMAN A, KAR A, YU X. Thermal effects of ultrafast laser interaction with polypropylene[J]. Opt Express, 2019, 27(4): 5764-5783. doi: 10.1364/OE.27.005764
    [11]
    田晓耕, 沈亚鹏. 广义热弹性问题研究进展[J]. 力学进展, 2012, 42(1): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201004.htm

    TIAN Xiaogeng, SHEN Yapeng. Advances in generalized thermoelastic problems[J]. Advances in Mechanics, 2012, 42(1): 18-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201004.htm
    [12]
    包立平, 胡玉博, 吴立群. 具有初值间断的Burgers方程奇摄动解[J]. 应用数学和力学, 2020, 41(7): 807-816. doi: 10.21656/1000-0887.400270

    BAO Liping, HU Yubo, WU Liqun. Singularly perturbed solutions of burgers equations with initial value discontinuities[J]. Applied Mathematics and Mechanics, 2020, 41(7): 807-816. (in Chinese) doi: 10.21656/1000-0887.400270
    [13]
    谭胜, 吴建军, 黄强, 等. 基于双相延迟模型的飞秒激光烧蚀金属模型[J]. 物理学报, 2019, 68(5): 233-244. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201905027.htm

    TAN Sheng, WU Jianjun, HUANG Qiang, et al. A femtosecond laser ablation model based on two-phase delay model[J]. Acta Physica Sinica, 2019, 68(5): 233-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201905027.htm
    [14]
    TZOU D Y. A unified field approach for heat conduction from macro-to micro-scales[J]. Journal of Heat Transfer, 1995, 117(1): 8-16.
    [15]
    XIONG Q L, LI Z H, TIAN X G. Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2184). DOI: 10.1098/rspa.2015.0614.
    [16]
    LI Y, LI C, YAO W, et al. Solid-to-super-critical phase change and resulting stress wave during internal laser ablation[J]. Journal of Thermal Stresses, 2018, 41(10/12): 1364-1379.
    [17]
    CATTANEO C. Sulla conduzione del calore[C]//Attidel Seminario Matematico e Fisicodella Università di Modena. Vol 3. 1948: 83-101.
    [18]
    VERNOTTE P. Les paradoxes de la theorie continue de l'equation de la chaleur[J]. Comptes Rendus, 1958, 246: 3154-3155.
    [19]
    LORD H W, SHULMAN Y. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309.
    [20]
    何天虎, 曹丽, 周又和. 受移动热源作用的两端固定杆的广义热-弹耦合问题[J]. 工程力学, 2008, 25(5): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200805008.htm

    HE Tianhu, CAO Li, ZHOU Youhe. Generalized thermal-elastic coupling problem of fixed rod with two ends subjected to moving heat source[J]. Engineering Mechanics, 2008, 25(5): 22-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200805008.htm
    [21]
    WANG X, XU X. Thermoelastic wave induced by pulsed laser heating[J]. Applied Physics A: Materials Science & Processing, 2001, 73(1): 107-114.
    [22]
    黄飞, 马永斌. 移动热源作用下基于分数阶应变的三维弹性体热-机响应[J]. 应用数学和力学, 2021, 42(4): 373-384. doi: 10.21656/1000-0887.400346

    HUANG Fei, MA Yongbin. Thermomechanical responses of 3D media under moving heat sources based on fractional-order strains[J]. Applied Mathematics and Mechanics, 2021, 42(4): 373-384. (in Chinese) doi: 10.21656/1000-0887.400346
    [23]
    马永斌, 李东升. 考虑记忆效应及尺寸效应窄长薄板的磁-热弹性耦合动态响应[J]. 应用数学和力学, 2022, 43(8): 888-900. doi: 10.21656/1000-0887.420200

    MA Yongbin, LI Dongsheng. Magneto-thermoelastic coupling dynamic responses of narrow long thin plates under memory effects and size effects[J]. Applied Mathematics and Mechanics, 2022, 43(8): 888-900. (in Chinese) doi: 10.21656/1000-0887.420200
    [24]
    EL-KARAMANY A S, EZZAT M A. Thermal shock problem in generalized thermo-viscoelasticty under four theories[J]. International Journal of Engineering Science, 2004, 42(7): 649-671.
    [25]
    熊春宝, 郭颖, 刁钰, 等. 荷载作用下多孔饱和地基的热-水-力耦合动力响应分析[J]. 计算力学学报, 2018, 35(6): 795-801. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201806021.htm

    XIONG Chunbao, GUO Ying, DIAO Yu, et al. Analysis of thermal-hydro-mechanical coupling dynamic response of porous saturated foundation under load[J]. Chinese Journal of Computational Mechanics, 2018, 35(6): 795-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201806021.htm
    [26]
    ABO-DAHAB S, ABD-ALLA A, ALQARNI A J. A two-dimensional problem with rotation and magnetic field in the context of four thermoelastic theories[J]. Results in Physics, 2017, 7: 2742-2751.
    [27]
    ALOTAIBI H, ABO-DAHAB S, KHALIL E, et al. Mathematical modeling on rotational magneto-thermoelastic phenomenon under gravity and laser pulse considering four theories[J]. Complexity, 2021, 2021: 5521684.
    [28]
    DESWAL S, KALKAL K. A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion[J]. International Journal of Thermal Sciences, 2011, 50(5): 749-759.
    [29]
    CHASE JR M W. NIST-JANAF thermochemical tables[C]//Journal of Physical and Chemical Reference Data. Monograph 9, 1998.
    [30]
    VEDAVARZ A, KUMAR S, MOALLEMI M K. Significance of non-fourier heat waves in conduction[J]. Journal of Heat Transfer, 1994, 116(1): 221-224.
    [31]
    ZHENG C, ZHAO K, SHEN H, et al. Crack behavior in ultrafast laser drilling of thermal barrier coated nickel superalloy[J]. Journal of Materials Processing Technology, 2020, 282: 116678.
    [32]
    关振铎, 张中太, 焦金牛. 无机材料物理性能[M]. 北京: 清华大学出版社, 2011: 87-117.

    GUAN Zhenduo, ZHANG Zhongtai, JIAO Jinniu. Physical Properties of Inorganic Materials[M]. Beijing: Tsinghua University Press, 2011: 87-117. (in Chinese)
    [33]
    徐辉, 邓建兵, 沈江立. 固体材料比热容随温度变化规律的研究[J]. 宇航材料工艺, 2011, 41(5): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG201105020.htm

    XU Hui, DENG Jianbing, SHEN Jiangli. Study on specific heat capacity of solid materials with temperature variation[J]. Aerospace Materials & Technology, 2011, 41(5): 74-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG201105020.htm
    [34]
    单水维. Y2O3稳定ZrO2陶瓷材料导热性能的研究[D]. 硕士学位论文. 包头: 内蒙古科技大学, 2007.

    SHAN Shuiwei. Study on thermal conduction properties of yttria-stabilized zirconia ceramic material[D]. Master Thesis. Baotou: Inner Mongolia University of Science & Technology, 2007. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (321) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return