Volume 44 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
LIU Wenjie, WANG Hanquan. The Legendre Collocation Spectral Method for the Ground State Solutions of the Bose-Einstein Condensates[J]. Applied Mathematics and Mechanics, 2023, 44(6): 719-730. doi: 10.21656/1000-0887.430257
Citation: LIU Wenjie, WANG Hanquan. The Legendre Collocation Spectral Method for the Ground State Solutions of the Bose-Einstein Condensates[J]. Applied Mathematics and Mechanics, 2023, 44(6): 719-730. doi: 10.21656/1000-0887.430257

The Legendre Collocation Spectral Method for the Ground State Solutions of the Bose-Einstein Condensates

doi: 10.21656/1000-0887.430257
  • Received Date: 2022-08-10
  • Rev Recd Date: 2023-05-18
  • Publish Date: 2023-06-01
  • In recent years, a series of important achievements have been made in the experimental study of the ground state solutions of the Bose Einstein condensates. First, the ground state solution problem of the Bose Einstein condensate was converted into the extreme value problem of energy functional with the dimensionless method. In the discretization of the energy functional, the Legendre collocation spectral method was used in the 1D and 2D cases. Second, the energy functional minimum problem was numerically simulated. The analyses of the experimental data and graphs show that, the Legendre collocation spectral method is applicable to the ground state solution of the non-rotating Bose Einstein condensate, and the errors of the numerical results are very small.
  • loading
  • [1]
    BAO W, WANG H, MARKOWICH P A. Ground, symmetric and central vortex states in rotating Bose-Einstein condensates[J]. Communications in Mathematical Sciences, 2005, 3(1): 57-88. doi: 10.4310/CMS.2005.v3.n1.a5
    [2]
    冯悦. Bose-Einstein凝聚基态解的时空自适应方法[D]. 硕士学位论文. 杭州: 浙江大学, 2017.

    FENG Yue. A spatiotemporal adaptive method for Bose-Einstein condensed ground state solutions[D]. Master Thesis. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [3]
    LIU H, DENG D, PANG P, et al. Numerical simulations on ground states for rotating two-component Bose-Einstein condensates[J]. Advances in Applied Mathematics, 2017, 6(9): 1187-1200. doi: 10.12677/AAM.2017.69144
    [4]
    温建蓉, 李晋斌. 单组份玻色-爱因斯坦凝聚体基态稳定性研究[J]. 西安文理学院学报(自然科学版), 2018, 21(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJY201801002.htm

    WEN Jianrong, LI Jinbin. Research on ground state stability of single-component Bose-Einstein condensate[J]. Journal of Xi'an University(Natural Science Edition), 2018, 21(1): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJY201801002.htm
    [5]
    GAIDAMOUR J, TANG Q, ANTOINE X. BEC2HPC: a HPC spectral solver for nonlinear Schrödinger and rotating Gross-Pitaevskii equations. Stationary states computation[J]. Computer Physics Communications, 2021, 265: 108007. doi: 10.1016/j.cpc.2021.108007
    [6]
    王智军. 带杂质旋转玻色-爱因斯坦凝聚体基态的数值模拟[D]. 硕士学位论文. 长沙: 湖南师范大学, 2020.

    WANG Zhijun. Numerical simulation of the ground state of a Bose-Einstein condensate with impurities[D]. Master Thesis. Changsha: Hunan Normal University, 2020. (in Chinese)
    [7]
    XU F, HUANG Q, WANG M, et al. A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates[J]. Applied Mathematics and Computation, 2020, 385: 125404. doi: 10.1016/j.amc.2020.125404
    [8]
    CHEN H, DONG G, LIU W, et al. Second-order flows for computing the ground states of rotating Bose-Einstein condensates[J]. Journal of Computational Physics, 2022, 475: 111872.
    [9]
    EDWARDS M, BURNETT K. Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms[J]. Physical Review A, 1995, 51(2): 1382. doi: 10.1103/PhysRevA.51.1382
    [10]
    BAO W, DU Q. Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[J]. SIAM Journal on Scientific Computing, 2003, 25(5): 1674-1697.
    [11]
    BAO W, SHEN J. A fourth-order time-splitting Laguerre-Hermite pseudo-spectral method for Bose-Einstein condensates[J]. SIAM Journal on Scientific Computing, 2005, 26(6): 2010-2028. doi: 10.1137/030601211
    [12]
    BAO W, JAKSCH D, MARKOWICH P A. Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation[J]. Journal of Computational Physics, 2003, 187(1): 318-342. doi: 10.1016/S0021-9991(03)00102-5
    [13]
    舒级, 张健. 一类拟线性Schrödinger方程[J]. 应用数学和力学, 2007, 28(7): 877-882. doi: 10.3321/j.issn:1000-0887.2007.07.015

    SHU Ji, ZHANG Jian. On a class of quasilinear Schrödinger equations[J]. Applied Mathematics and Mechanics, 2007, 28(7): 877-882. (in Chinese) doi: 10.3321/j.issn:1000-0887.2007.07.015
    [14]
    CALIARI M, RAINER S. GSGPEs: a MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations[J]. Computer Physics Communications, 2013, 184(3): 812-823. doi: 10.1016/j.cpc.2012.10.007
    [15]
    华冬英, 邱镜亮. 玻色-爱因斯坦凝聚基态解的有限元数值计算[J]. 北京信息科技大学学报, 2011, 26(6): 21-25. doi: 10.3969/j.issn.1674-6864.2011.06.005

    HUA Dongying, QIU Jingliang. Computing the ground state solution of Bose-Einstein condensations by finite element method[J]. Journal of Beijing Information Science & Technology University, 2011, 26(6): 21-25. (in Chinese) doi: 10.3969/j.issn.1674-6864.2011.06.005
    [16]
    WU X, WEN Z, BAO W. A regularized Newton method for computing ground states of Bose-Einstein condensates[J]. Journal of Scientific Computing, 2017, 73: 303-329. doi: 10.1007/s10915-017-0412-0
    [17]
    杨娜, 陈龙伟, 熊梅. 广义带导数的非线性Schrödinger方程的动态分析和精确解[J]. 应用数学和力学, 2018, 39(10): 1198-1205. doi: 10.21656/1000-0887.380302

    YANG Na, CHEN Longwei, XIONG Mei. Dynamic analysis and exact solution of the general nonlinear Schrödinger equation with derivative[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1198-1205. (in Chinese) doi: 10.21656/1000-0887.380302
    [18]
    代猛, 尹小艳. 立方Schrödinger方程的半隐格式BDF2-FEM无条件最优误差估计[J]. 应用数学和力学, 2019, 40(6): 663-681. doi: 10.21656/1000-0887.390209

    DAI Meng, YIN Xiaoyan. Unconditionally optimal error estimates of the semi-implicit BDF2-FEM for cubic Schrödinger equations[J]. Applied Mathematics and Mechanics, 2019, 40(6): 663-681. (in Chinese) doi: 10.21656/1000-0887.390209
    [19]
    曹蕊, 华冬英, 王茜, 等. Bose-Einstein凝聚问题基态解的数值方法比较和分析[J]. 北京信息科技大学学报, 2021, 36(6): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGY202106002.htm

    CAO Rui, HUA Dongying, WANG Xi, et al. Comparison and analysis of numerical methods for ground state solution of Bose-Einstein condensation[J]. Journal of Beijing Information Science & Technology University, 2021, 36(6): 6-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGY202106002.htm
    [20]
    NOCEDAL J, WRIGHT S J. Numerical Optimization[M]. 2nd ed. New York: Springer, 2006.
    [21]
    SHEN J, TANG T, WANG L L. Spectral Methods[M]. Berlin: Springer, 2011.
    [22]
    ANGLIN J R, KETTERLE W. Bose-Einstein condensation of atomic gases[J]. Nature, 2002, 436: 211-218.
    [23]
    DALFOVO F, GIORGINI S, PITAEVSKⅡ L P, et al. Theory of Bose-Einstein condensation in trapped gases[J]. Review of Modern Physics, 1998, 71(3): 463-512.
    [24]
    PETHICK C J. Bose-Einstein Condensation in Dilute Gases[M]. Cambridge: Cambridge University Press, 2008.
    [25]
    PITAEVSKⅡ L, STRINGARI S. Bose-Einstein condensation[J]. Physical Review Letters, 2009, 103(20): 200402. doi: 10.1103/PhysRevLett.103.200402
    [26]
    BAO W, TANG W. Ground state solution of Bose-Einstein condensate by directly minimizing the energy functional[J]. Journal of Computational Physics, 2003, 187(1): 230-254. doi: 10.1016/S0021-9991(03)00097-4
    [27]
    BAO W, CAI Y. Mathematical theory and numerical methods for Bose-Einstein condensation[J]. Kinetic and Related Models, 2013, 6(1): 1-135. doi: 10.3934/krm.2013.6.1
    [28]
    LIEB E H, SEIRINGER R, YNGVASON J. Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional[J]. Physical Review A, 2000, 61(4): 043602. doi: 10.1103/PhysRevA.61.043602
    [29]
    PETHICK C J, SMITH H. Bose-Einstein Condensation in Dilute Gases: Theory of the Condensed State[M]. Cambridge: Cambridge University Press, 2001.
    [30]
    CANCōS E, CHAKIR R, MADAY Y. Numerical analysis of nonlinear eigenvalue problems[J]. Journal of Scientific Computing, 2009, 45(1): 1-24.
    [31]
    AN J, SHEN J, ZHANG Z. The spectral-Galerkin approximation of nonlinear eigenvalue problems[J]. Applied Numerical Mathematics: Transactions of IMACS, 2018, 131: 1-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (204) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return