Citation: | ZHAO Yingzhi, TANG Huaiping, LAI Zedong, ZHANG Jiajie. Free Vibration Analysis of Porous 2D Functionally Graded Material Microbeams on Winkler's Foundation[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1354-1365. doi: 10.21656/1000-0887.440050 |
[1] |
UDUPA G, RAO S S, GANGADHARAN K V. Functionally graded composite materials: an overview[J]. Procedia Materials Science, 2014, 5: 1291-1299. doi: 10.1016/j.mspro.2014.07.442
|
[2] |
SANKAR B V. An elasticity solution for functionally graded beams[J]. Composites Science and Technology, 2001, 61(5): 689-696. doi: 10.1016/S0266-3538(01)00007-0
|
[3] |
MALEKZADEH P, KARAMI G, FARID M. DQEM for free vibration analysis of Timoshenko beams on elastic foundations[J]. Computational Mechanics, 2003, 31(3/4): 219-228.
|
[4] |
SHARIAT B A S, ESLAMI M R. Buckling of thick functionally graded plates under mechanical and thermal loads[J]. Composite Structures, 2007, 78(3): 433-439. doi: 10.1016/j.compstruct.2005.11.001
|
[5] |
BENATTA M A, MECHAB I, TOUNSI A, et al. Static analysis of functionally graded short beams including warping and shear deformation effects[J]. Computational Materials Science, 2008, 44(2): 765-773. doi: 10.1016/j.commatsci.2008.05.020
|
[6] |
ALSHORBAGY A E, ELTAHER M A, MAHMOUD F F. Free vibration characteristics of a functionally graded beam by finite element method[J]. Applied Mathematical Modelling, 2011, 35(1): 412-425. doi: 10.1016/j.apm.2010.07.006
|
[7] |
ŞIMŞEK M. Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions[J]. Composite Structures, 2015, 133: 968-978. doi: 10.1016/j.compstruct.2015.08.021
|
[8] |
ŞIMŞEK M. Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions[J]. Composite Structures, 2016, 149: 304-314. doi: 10.1016/j.compstruct.2016.04.034
|
[9] |
滕兆春, 衡亚洲, 张会凯, 等. 弹性地基上转动FGM梁自由振动的DTM分析[J]. 计算力学学报, 2017, 34(6): 712-717. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201706006.htm
TENG Zhaochun, HENG Yazhou, ZHANG Huikai, et al. DTM analysis for free vibration of rotating FGM beams resting on elastic foundations[J]. Chinese Journal of Computational Mechanics, 2017, 34(6): 712-717. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201706006.htm
|
[10] |
蒲育, 周凤玺. FGM梁临界屈曲载荷的改进型GDQ法分析[J]. 应用基础与工程科学学报, 2019, 27(6): 1308-1320. doi: 10.16058/j.issn.1005-0930.2019.06.011
PU Yu, ZHOU Fengxi. Critical buckling loads analysis of FGM beams by a modified generalized differential quadrature method[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1308-1320. (in Chinese) doi: 10.16058/j.issn.1005-0930.2019.06.011
|
[11] |
WITVROUW A, MEHTA A. The use of functionally graded poly-sige layers for MEMS applications[J]. Materials Science Forum, 2005, 520(492/493): 255-260.
|
[12] |
FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity: theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42(2): 475-487. doi: 10.1016/0956-7151(94)90502-9
|
[13] |
BAŽANT Z P. Size effect in blunt fracture: concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4): 518-535. doi: 10.1061/(ASCE)0733-9399(1984)110:4(518)
|
[14] |
YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10): 2731-2743. doi: 10.1016/S0020-7683(02)00152-X
|
[15] |
周强. 考虑表面效应的压电纳米梁的振动研究[J]. 应用数学和力学, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330
ZHOU Qiang. Vibration of piezoelectric nanobeams with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. (in Chinese) doi: 10.21656/1000-0887.400330
|
[16] |
ŞIMŞEK M, KOCATÜRK T, AKBAŞ Ş D. Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory[J]. Composite Structures, 2013, 95: 740-747. doi: 10.1016/j.compstruct.2012.08.036
|
[17] |
KE L L, WANG Y S. Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory[J]. Composite Structures, 2011, 93(2): 342-350. doi: 10.1016/j.compstruct.2010.09.008
|
[18] |
ŞIMŞEK M, REDDY J N. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory[J]. International Journal of Engineering Science, 2013, 64: 37-53. doi: 10.1016/j.ijengsci.2012.12.002
|
[19] |
AL-BASYOUNI K S, TOUNSI A, MAHMOUD S R. Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position[J]. Composite Structures, 2015, 125: 621-630. doi: 10.1016/j.compstruct.2014.12.070
|
[20] |
AKGÖZ B, CIVALEK Ö. Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory[J]. Composite Structures, 2013, 98: 314-322. doi: 10.1016/j.compstruct.2012.11.020
|
[21] |
刘松正, 张波, 沈火明, 等. 准三维功能梯度微梁的尺度效应模型及微分求积有限元[J]. 应用数学和力学, 2021, 42(6): 623-636. doi: 10.21656/1000-0887.410260
LIU Songzheng, ZHANG Bo, SHEN Huoming, et al. A size-dependent quasi-3D functionally graded microbeam model andrelated differential quadrature finite elements[J]. Applied Mathematics and Mechanics, 2021, 42(6): 623-636. (in Chinese) doi: 10.21656/1000-0887.410260
|
[22] |
雷剑, 谢宇阳, 姚明格, 等. 变截面二维功能梯度微梁的振动和屈曲特性[J]. 应用数学和力学, 2022, 43(10): 1133-1145. doi: 10.21656/1000-0887.420323
LEI Jian, XIE Yuyang, YAO Mingge, et al. Vibration and buckling characteristics of two-dimensional functionally graded microbeams with variable cross sections[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1133-1145. (in Chinese) doi: 10.21656/1000-0887.420323
|
[23] |
CHEN X, LU Y, LI Y. Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium[J]. Applied Mathematical Modelling, 2019, 67: 430-448. doi: 10.1016/j.apm.2018.11.004
|
[24] |
CHEN D, YANG J, KITIPORNCHAI S. Elastic buckling and static bending of shear deformable functionally graded porous beam[J]. Composite Structures, 2015, 133: 54-61. doi: 10.1016/j.compstruct.2015.07.052
|
[25] |
CHEN D, YANG J, KITIPORNCHAI S. Free and forced vibrations of shear deformable functionally graded porous beams[J]. International Journal of Mechanical Sciences, 2016, 108/109: 14-22.
|
[26] |
LEI Y L, GAO K, WANG X, et al. Dynamic behaviors of single- and multi-span functionally graded porous beams with flexible boundary constraints[J]. Applied Mathematical Modelling, 2020, 83: 754-776.
|
[27] |
王伟斌, 杨文秀, 滕兆春. 多孔功能梯度材料Timoshenko梁的自由振动分析[J]. 计算力学学报, 2021, 38(5): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202205007.htm
WANG Weibin, YANG Wenxiu, TENG Zhaochun. Free vibration analysis of porous functionally graded materials Timoshenko beam[J]. Chinese Journal of Computational Mechanics, 2021, 38(5): 586-594. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202205007.htm
|
[28] |
WANG Xinwei. Differential Quadrature and Differential Quadrature Based Element Methods[M]. 2015.
|
[29] |
TORNABENE F, FANTUZZI N, UBERTINI F, et al. Strong formulation finite element method based on differential quadrature: a survey[J]. Applied Mechanics Reviews, 2015, 67(2): 020801.
|
[30] |
吴明明. 弹性地基上的功能梯度梁力学问题研究[D]. 硕士学位论文. 邯郸: 河北工程大学, 2019.
WU Mingming. Research on mechanical problems of functionally graded beams resting on the elastic foundation[D]. Master Thesis. Handan: Hebei University of Engineering, 2019. (in Chinese)
|
[31] |
DENG H, CHENG W. Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams[J]. Composite Structures, 2016, 141: 253-263.
|