Volume 44 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZHANG Yongzheng, LIU Lei, LIU Qi, XU Guangkui. Multi-Scale Prediction of Thermal and Mechanical Properties of C/SiC Braided Composites[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1157-1171. doi: 10.21656/1000-0887.440056
Citation: ZHANG Yongzheng, LIU Lei, LIU Qi, XU Guangkui. Multi-Scale Prediction of Thermal and Mechanical Properties of C/SiC Braided Composites[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1157-1171. doi: 10.21656/1000-0887.440056

Multi-Scale Prediction of Thermal and Mechanical Properties of C/SiC Braided Composites

doi: 10.21656/1000-0887.440056
  • Received Date: 2023-03-06
  • Rev Recd Date: 2023-07-14
  • Publish Date: 2023-10-31
  • C/SiC composites have been widely used in aerospace, national defense, and chemical industries due to their excellent mechanical and thermal properties. Accurate knowledge about the mechanical/thermal properties of C/SiC composites is very important for their efficient application in related fields. Based on the representative volume element (RVE) and periodic boundary conditions, a micro/meso single-cell model for C/SiC composites was established in view of the non-uniform and multi-scale characteristics of fiber bundles, such as the volume fraction, the interweaving mode, and the weaving dimension. The finite element software ABAQUS was used to predict the micro-scale thermal and mechanical properties of the fiber bundle, and the fiber bundle properties were introduced into the mesoscopic model to analyze and obtain the macroscopic thermal and mechanical properties of the composite. Based on this multi-scale correlation analysis method, the thermal conductivity and thermal expansion coefficient of fiber bundles and C/SiC composites were further studied at the operating temperatures ranging from 27~1 227 ℃. The study has certain guiding significance for the application of C/SiC composites in engineering.
  • (Recommended by LIU Shaobao, M. AMM Editorial Board)
  • loading
  • [1]
    XU Y, REN S, ZHANG W, et al. Study of thermal buckling behavior of plain woven C/SiC composite plate using digital image correlation technique and finite element simulation[J]. Thin-Walled Structures, 2018, 131(10): 385-392.
    [2]
    汪海滨, 张卫红, 许英杰. C/C-SiC机织复合材料尺度参数对力学性能的影响[J]. 复合材料学报, 2010, 27(5): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201005017.htm

    WANG Haibin, ZHANG Weihong, XU Yingjie. Effects of different scale parameters on effective modulus of woven C/C-SiC composites[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201005017.htm
    [3]
    梅辉. 2D C/SiC在复杂耦合环境中的损伤演变和失效机制[D]. 硕士学位论文. 西安: 西北工业大学, 2007.

    MEI Hui. Damage evolution and failure mechanism of 2D C/SiC in complex coupled environment[D]. Master Thesis. Xi'an: Northwestern Polytechnical University, 2007. (in Chinese)
    [4]
    YANG Q, HAN X, XU C, et al. Development and validation of an anisotropic damage constitutive model for C/SiC composite[J]. Ceramics International, 2018, 44(18): 22880-22889. doi: 10.1016/j.ceramint.2018.09.081
    [5]
    刘波, 雷友锋, 宋迎东. 纤维增强复合材料宏观与细观统一的细观力学模型[J]. 航空发动机, 2007, 3: 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200703011.htm

    LIU Bo, LEI Youfeng, SONG Yingdong. A unified micromechanical model of macroscopical and microscopical fiber reinforced composites[J]. Aeroengine, 2007, 3: 45-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200703011.htm
    [6]
    XU Y, ZHANG P, LU H, et al. Hierarchically modeling the elastic properties of 2D needled carbon/carbon composites[J]. Composite Structures, 2015, 133: 148-156. doi: 10.1016/j.compstruct.2015.07.081
    [7]
    王新峰, 周光明, 周储伟, 等. 基于周期性边界条件的机织复合材料多尺度分析[J]. 南京航空航天大学学报, 2005, 37(6): 730-735. doi: 10.3969/j.issn.1005-2615.2005.06.012

    WANG Xinfeng, ZHOU Guangming, ZHOU Chuwei, et al. Multi-scale analysis of woven composites based on periodic boundary conditions[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2005, 37(6): 730-735. (in Chinese) doi: 10.3969/j.issn.1005-2615.2005.06.012
    [8]
    XU Y, ZHANG P, ZHANG W. Two-scale micromechanical modeling of the time dependent relaxation modulus of plain weave polymer matrix composites[J]. Composite Structures, 2015, 123: 35-44. doi: 10.1016/j.compstruct.2014.12.031
    [9]
    ISHIKAWA T, LI Z S, LU Y P, et al. The GS-X pump in plant, yeast, and animal cells: structure, function, and gene expression[J]. Bioscience Reports, 1997, 17(2): 189-207. doi: 10.1023/A:1027385513483
    [10]
    崔春丽, 徐耀玲. 预测纳米纤维复合材料有效弹性性能的界面模型和界面相模型[J]. 应用数学和力学, 2022, 43(8): 877-887. doi: 10.21656/1000-0887.420231

    CUI Chunli, XU Yaoling. Interfacial model and interfacial phase model for predicting effective elastic properties of nanofiber composites[J]. Applied Mathematics and Mechanics, 2022, 43(8): 877-887. (in Chinese) doi: 10.21656/1000-0887.420231
    [11]
    李典森, 卢子兴, 卢文书. 三维四向编织复合材料刚度和强度的理论预测[J]. 应用数学和力学, 2008, 29(2): 149-156. http://www.applmathmech.cn/article/id/1030

    LI Diansen, LU Zixing, LU Wenshu. Theoretical prediction of stiffness and strength of three-dimensional four-way braided composites[J]. Applied Mathematics and Mechanics, 2008, 29(2): 149-156. (in Chinese) http://www.applmathmech.cn/article/id/1030
    [12]
    张春春, 王艳超, 黄争鸣. 横观各向同性基体复合材料的等效弹性常数[J]. 应用数学和力学, 2018, 39(7): 750-765. doi: 10.21656/1000-0887.380267

    ZHANG Chunchun, WANG Yanchao, HUANG Zhengming. Equivalent elastic constants of transverse isotropic matrix composites[J]. Applied Mathematics and Mechanics, 2018, 39(7): 750-765. (in Chinese) doi: 10.21656/1000-0887.380267
    [13]
    NAIK N K, SRIDEVI E. An analytical method for thermoelastic analysis of 3D orthogonal interlock woven composites[J]. Journal of Reinforced Plastics and Composites, 2002, 21(13): 1149-1191. doi: 10.1177/073168402128987716
    [14]
    AI S, FU H, HE R, et al. Multi-scale modeling of thermal expansion coefficients of C/C composites at high temperature[J]. Materials and Design, 2015, 82(5): 181-188.
    [15]
    ULLAH Z, ZHOU X Y, KACZMARCZYK L, et al. A unified framework for the multi-scale computational homogenisation 3D-textile composites[J]. Composites (Part B): Engineering, 2019, 167: 582-598. doi: 10.1016/j.compositesb.2019.03.027
    [16]
    SIDDGONDE N, GHOSH A. Thermo-mechanical modeling of C/C 3D orthogonal and angle interlock woven fabric composites in high temperature environment[J]. Mechanics of Materials, 2020, 148: 1-14.
    [17]
    赵玉芬. 三维机织复合材料热传导及力学性能的多尺度有限元分析[D]. 硕士学位论文. 天津: 天津工业大学, 2017.

    ZHAO Yufen. Multi-scale finite element analysis of heat conduction and mechanical properties of three-dimensional woven composites[D]. Master Thesis. Tianjin: Tianjin Polytechnic University, 2017. (in Chinese)
    [18]
    张超, 许希武, 严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013, 34(7): 1636-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201307016.htm

    ZHANG Chao, XU Xiwu, YAN Xue. General periodic boundary conditions and finite element realization of textile composites for meso-mechanical analysis[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1636-1645. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201307016.htm
    [19]
    徐焜, 许希武. 三维编织复合材料弹性性能数值预测及细观应力分析[J]. 复合材料学报, 2007, 24(3): 178-185. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200703032.htm

    XU Kun, XU Xiwu. Prediction of elastic constants and simulation of stress field of 3D braided composites based on the finite element method[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 178-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200703032.htm
    [20]
    LIU Y, QU Z G, GUO J, et al. Numerical study on effective thermal conductivities of plain woven C/SiC composites with considering pores in interlaced woven yarns[J]. International Journal of Heat and Mass Transfer, 2019, 140: 410-419.
    [21]
    MREN A, NW A, AKA B, et al. Thermomechanical properties and stress analysis of 3-D textile composites by asymptotic expansion homogenization method[J]. Composites (Part B): Engineering, 2014, 60: 378-391.
    [22]
    PRADÈRE C, BATSALE J C, GOYHENECHE J M, et al. Thermal properties of carbon fibers at very high temperature[J]. Carbon, 2009, 47(3): 737-743.
    [23]
    PRADERE C, SAUDER C. Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300~2 500 K)[J]. Carbon, 2008, 46(14): 1874-1884.
    [24]
    SAUDER C, LAMON J, SAUDER C, et al. Thermomechanical properties of carbon fibres at high temperatures (up to 2 000 ℃)[J]. Composites Science and Technology, 2002, 62(4): 499-504.
    [25]
    BOWLES D, TOMPKINS S S. Prediction of coefficients of thermal expansion for unidirectional composites[J]. Journal of Composite Materials, 1989, 23: 370-388.
    [26]
    BORKOWSKI L, CHATTOPADHYAY A. Multiscale model of woven ceramic matrix composites considering manufacturing induced damage[J]. Composite Structures, 2015, 126: 62-71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views (337) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return