Volume 44 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
GONG Yuxiao, GAO Shuping. An Electrocardiogram Signal Classification Algorithm Based on Improved Deep Residual Shrinkage Networks[J]. Applied Mathematics and Mechanics, 2023, 44(8): 977-988. doi: 10.21656/1000-0887.440074
Citation: GONG Yuxiao, GAO Shuping. An Electrocardiogram Signal Classification Algorithm Based on Improved Deep Residual Shrinkage Networks[J]. Applied Mathematics and Mechanics, 2023, 44(8): 977-988. doi: 10.21656/1000-0887.440074

An Electrocardiogram Signal Classification Algorithm Based on Improved Deep Residual Shrinkage Networks

doi: 10.21656/1000-0887.440074
  • Received Date: 2023-03-22
  • Rev Recd Date: 2023-06-19
  • Publish Date: 2023-08-01
  • The electrocardiogram (ECG) signal classification is a significant research topic in the healthcare field. Most existing methods could not effectively reduce the missed diagnosis rate of classification with small-size samples and tackle the complexity of preprocessing operations. An electrocardiogram signal classification algorithm based on the improved deep residual shrinkage networks was proposed, namely the DRSL algorithm. Firstly, the small-size classification samples were augmented with the synthetic minority over-sampling technique to solve the classification imbalance problem. Secondly, the spatial features were extracted by mean of the improved deep residual shrinkage networks, where the residual module can avoid overfitting caused by deepening of network layers, and the squeeze-and-excitation operation with soft threshold subnetwork can extract important local features and remove noises automatically. Then, the time features were extracted with the long short-term memory networks. Finally, the classification results were output with the fully connected neural networks. The experimental results on the MIT-BIH arrhythmia database show that, the proposed algorithm is superior to IDRSN, DRSN, GAN+2DCNN, CNN+LSTM_ATTENTION, SE-CNN-LSTM in terms of classification performances.
  • loading
  • [1]
    EBRAHIMI Z, LONI M, DANESHTALAB M, et al. A review on deep learning methods for ECG arrhythmia classification[J]. Expert Systems With Applications: X, 2020, 7 : 100033. doi: 10.1016/j.eswax.2020.100033
    [2]
    KLIGFIELD P. The centennial of the einthoven electrocardiogram[J]. Journal of Electrocardiology, 2002, 35 (4): 123-129. doi: 10.1054/jelc.2002.37169
    [3]
    LYNCH R. ECG lead misplacement: a brief review of limb lead misplacement[J]. African Journal of Emergency Medicine, 2014, 4 (3): 130-139. doi: 10.1016/j.afjem.2014.05.006
    [4]
    李胜蓝, 辛继宾, 莫梅琦, 等. 基于QRS波群的心律失常辅助诊断模型研究[J]. 生物医学工程学进展, 2008, 29 (4): 202-205. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYC200804006.htm

    LI Shenglan, XIN Jibin, MO Meiqi, et al. The research of diagnosis model for arrhythmia using QRS complex[J]. Advances in Biomedical Engineering, 2008, 29 (4): 202-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHYC200804006.htm
    [5]
    LANNOY G D, FRANCOIS D, DELBEKE J, et al. Weighted conditional random fields for supervised interpatient heartbeat classification[J]. IEEE Transactions on Bio-Medical Engineering, 2012, 59 (1): 241-247. doi: 10.1109/TBME.2011.2171037
    [6]
    LAGERHOLM M, PETERSON C, BRACCINI G, et al. Clustering ECG complexes using hermite functions and self-organizing maps[J]. IEEE Transactions on Bio-Medical Engineering, 2000, 47 (7): 838-848. doi: 10.1109/10.846677
    [7]
    MINHAS F A, ARIF M. Robust electrocardiogram (ECG) beat classification using discrete wavelet transform[J]. Physiological Measurement, 2008, 29 (5): 555-570. doi: 10.1088/0967-3334/29/5/003
    [8]
    MONDÉJAR-GUERRA V, NOVO J, ROUCO J, et al. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers[J]. Biomedical Signal Processing and Control, 2019, 47 : 41-48. doi: 10.1016/j.bspc.2018.08.007
    [9]
    陈鹏, 刘子龙. 基于GAN-CNN的心律失常识别[J]. 电子科技, 2022, 35 (3): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202203007.htm

    CHEN Peng, LIU Zilong. Arrhythmia recognition based on GAN-CNN[J]. Electronic Science and Technology, 2022, 35 (3): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202203007.htm
    [10]
    SOWMYA S, JOSE D. Contemplate on ECG signals and classification of arrhythmia signals using CNN-LSTM deep learning model[J]. Measurement: Sensors, 2022, 24 : 100558. doi: 10.1016/j.measen.2022.100558
    [11]
    ZHANG T. Arrhythmias classification based on CNN and LSTM_ATTENTION hybrid model[C]//Proceedings of the 2021 3 rd World Symposium on Artificial Intelligence. Guangzhou, China: IEEE, 2021: 58-63.
    [12]
    郭炜伦, 方钰敏, 徐海蛟, 等. 基于SE-CNN-LSTM的心电识别算法[J]. 电脑知识与技术, 2022, 18 (21): 73-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS202221026.htm

    GUO Weilun, FANG Yumin, XU Haijiao, et al. An ECG recognition algorithm based on SE-CNN-LSTM[J]. Computer Knowledge and Technology, 2022, 18 (21): 73-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS202221026.htm
    [13]
    HAN C, SHI L. ML-ResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG[J]. Computer Methods and Programs in Biomedicine, 2020, 185 : 105138. doi: 10.1016/j.cmpb.2019.105138
    [14]
    秦博, 黎明, 黎天翼, 等. 基于注意力残差模型的心律失常分类研究[J]. 湖北师范大学学报(自然科学版), 2022, 42 (3): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSF202203003.htm

    QIN Bo, LI Ming, LI Tianyi, et al. Research on arrhythmia classification based on attention residual model[J]. Journal of Hubei Normal University (Natural Science Edition), 2022, 42 (3): 18-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBSF202203003.htm
    [15]
    刘小靖, 周又和, 王记增. 小波方法及其力学应用研究进展[J]. 应用数学和力学, 2022, 43 (1): 1-13. doi: 10.21656/1000-0887.420388

    LIU Xiaojing, ZHOU Youhe, WANG Jizeng. Research progresses of wavelet methods and their applications in mechanics[J]. Applied Mathematics and Mechanics, 2022, 43 (1): 1-13. (in Chinese) doi: 10.21656/1000-0887.420388
    [16]
    ZHAO M, ZHONG S, FU X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16 (7): 4681-4690. doi: 10.1109/TII.2019.2943898
    [17]
    HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Proceedings of the Computer Vision ECCV 2016. Cham: Springer, 2016: 630-645.
    [18]
    洪奇峰, 施伟斌, 吴迪, 等. 深度卷积神经网络模型发展综述[J]. 软件导刊, 2020, 19 (4): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK202004017.htm

    HONG Qifeng, SHI Weibin, WU Di, et al. Review of the development of deep convolutional neural network model[J]. Software Guide, 2020, 19 (4): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK202004017.htm
    [19]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE, 2018: 7132-7141.
    [20]
    吴爱华, 彭金喜. 基于深度残差收缩网络的信号调制类型识别[J]. 电子信息对抗技术, 2022, 37 (4): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDK202204005.htm

    WU Aihua, PENG Jinxi. Signal modulation recognition based on deep residual shrinkage network[J]. Electronic Information Countermeasure Technology, 2022, 37 (4): 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDK202204005.htm
    [21]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735-1780.
    [22]
    张巧灵, 高淑萍, 何迪, 等. 基于时间序列的混合神经网络数据融合算法[J]. 应用数学和力学, 2021, 42 (1): 82-91. doi: 10.21656/1000-0887.410056

    ZHANG Qiaoling, GAO Shuping, HE Di, et al. A hybrid neural network data fusion algorithm based on time series[J]. Applied Mathematics and Mechanics, 2021, 42 (1): 82-91. (in Chinese) doi: 10.21656/1000-0887.410056
    [23]
    韦张跃昊, 钱升谊. 基于滤波重构和卷积神经网络的心电信号分类[J]. 电子科技, 2019, 32 (11): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201911003.htm

    WEI Zhangyuehao, QIAN Shengyi. ECG signal classification based on filtering-reconstruction and convolutional neural network[J]. Electronic Science and Technology, 2019, 32 (11): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201911003.htm
    [24]
    LIU F, ZHOU X, WANG T, et al. An attention-based hybrid LSTM-CNN model for arrhythmias classification[C]//Proceedings of the 2019 International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2019: 1-8.
    [25]
    李兴秀, 唐建军, 华晶. 结合CNN与双向LSTM的心律失常分类[J]. 计算机科学与探索, 2021, 15 (12): 2353-2361. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202112010.htm

    LI Xingxiu, TANG Jianjun, HUA Jing. Arrhythmia classification based on CNN and bidirectional LSTM[J]. Computer Science and Exploration, 2021, 15 (12): 2353-2361. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202112010.htm
    [26]
    石洪波, 陈雨文, 陈鑫. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 2019, 14 (6): 1073-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201906002.htm

    SHI Hongbo, CHEN Yuwen, CHEN Xin. Summary of research on SMOTE oversampling and its improved algorithms[J]. Journal of Intelligent Systems, 2019, 14 (6): 1073-1083. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201906002.htm
    [27]
    黄莹. 基于深度残差收缩网络的心律失常分类算法研究[D]. 硕士学位论文. 南宁: 广西大学, 2022.

    HUANG Ying. A research of arrhythmia classification algorithm based on deep residual shrinkage network[D]. Master Thesis. Nanning: Guangxi University, 2022. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (249) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return