Volume 45 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
PAN Hanting, XU Duo, XU Hongtao, LUO Zhuqing. Numerical Analysis on Thermal Performances of Metal Foam Composite Phase Change Materials Under Cavity Effects[J]. Applied Mathematics and Mechanics, 2024, 45(1): 85-96. doi: 10.21656/1000-0887.440082
Citation: PAN Hanting, XU Duo, XU Hongtao, LUO Zhuqing. Numerical Analysis on Thermal Performances of Metal Foam Composite Phase Change Materials Under Cavity Effects[J]. Applied Mathematics and Mechanics, 2024, 45(1): 85-96. doi: 10.21656/1000-0887.440082

Numerical Analysis on Thermal Performances of Metal Foam Composite Phase Change Materials Under Cavity Effects

doi: 10.21656/1000-0887.440082
  • Received Date: 2023-03-27
  • Rev Recd Date: 2023-09-14
  • Publish Date: 2024-01-01
  • A randomly distributed cavity model was constructed for 3D metal foam composite phase change materials (PCMs), and the multi-relaxation time lattice Boltzmann method was used to explore the cavity effects with different volume fractions, distribution locations, and thermal conductivity ratios of metal foam to PCM at the cavity scale. The results show that, with the increase of the cavity volume fraction, the heat transfer rate and latent heat storage capacity of composite PCMs would decrease. At a Fourier number of 0.7, compared to the case without cavity, the heat storage decreases respectively by 3.2%, 9.0%, and 13.0% for a cavity volume fraction of 2.4%, 7.6%, and 11.7%, respectively. The significant hindering effect on the melting process of composite PCMs occurs in the case of cavities with a volume fraction of 3% and concentrated near the high-temperature wall. The cavities act as an adiabatic layer, extending the complete melting time of composite PCMs by 6.1%. To weaken the cavity effect, the metal foam skeleton with a thermal conductivity ratio of more than 100 can be selected to improve its leading role in heat transfer.
  • loading
  • [1]
    LUO X, WANG J H, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137: 511-536. doi: 10.1016/j.apenergy.2014.09.081
    [2]
    OPEYEMI B M. Path to sustainable energy consumption: the possibility of substituting renewable energy for non-renewable energy[J]. Energy, 2021, 228: 120519. doi: 10.1016/j.energy.2021.120519
    [3]
    SHAMBERGER P J, BRUNO N M. Review of metallic phase change materials for high heat flux transient thermal management applications[J]. Applied Energy, 2020, 258: 113955. doi: 10.1016/j.apenergy.2019.113955
    [4]
    XU H T, WANG N, ZHANG C Y, et al. Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies[J]. Energy Conversion and Management, 2021, 229: 113660. doi: 10.1016/j.enconman.2020.113660
    [5]
    MAHMOUD M, RAMADAM M, PULLEN K, et al. Waste Heat Recovery Applications Incorporating Phase Change Materials[M]//Reference Module in Materials Science and Materials Engineering. Elsevier, 2021.
    [6]
    黄钦, 余凌峰, 陈凯. 相变材料耦合冷板电池热管理系统的优化设计[J]. 应用数学和力学, 2022, 43(11): 1195-1202. doi: 10.21656/1000-0887.430278

    HUANG Qin, YU Lingfeng, CHEN Kai. Design of the battery thermal management system with phase change material coupled cold plates[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1195-1202. (in Chinese) doi: 10.21656/1000-0887.430278
    [7]
    潘艾刚, 王俊彪, 张贤杰. 相变温控技术在航天热控领域中的应用现状及展望[J]. 材料导报, 2013, 27(23): 113-119.

    PAN Aigang, WANG Junbiao, ZHANG Xianjie. A review on development and applications of metal phase change technology in thermal control for aeronautics[J]. Materials Reports, 2013, 27(23): 113-119. (in Chinese)
    [8]
    HEYHAT M M, MOUSAVI S, SIAVASHI M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle[J]. Journal of Energy Storage, 2020, 28: 101235. doi: 10.1016/j.est.2020.101235
    [9]
    AL-JETHELAH M, EBADI S, VENKATESHWAR K, et al. Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: an experimental investigation[J]. Applied Thermal Engineering, 2019, 148: 1029-1042. doi: 10.1016/j.applthermaleng.2018.11.121
    [10]
    HUANG X P, SUN C, CHEN Z Q, et al. Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams[J]. International Journal of Thermal Sciences, 2021, 170: 107151. doi: 10.1016/j.ijthermalsci.2021.107151
    [11]
    YANG B, ZHANG R R, GAO Z, et al. Effect of nanoparticles and metal foams on heat transfer properties of PCMs[J]. International Journal of Thermal Sciences, 2022, 179: 107567. doi: 10.1016/j.ijthermalsci.2022.107567
    [12]
    马预谱, 胡锦炎, 陈奇, 等. 金属材料增强的石蜡储热性能研究[J]. 工程热物理学报, 2016, 37(10): 2196-2201.

    MA Yupu, HU Jinyan, CHEN Qi, et al. Study on heat storage performance enhancement of paraffin by metallic material[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2196-2201. (in Chinese)
    [13]
    CHEN L, WANG L, WANG Y F, et al. Influence of phase change material volume shrinkage on the cyclic process of thermal energy storage: a visualization study[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2022, 203: 117776.
    [14]
    徐伟强, 袁修干, 邢玉明, 等. 空穴分布对固液相变蓄热过程的影响[J]. 太阳能学报, 2011, 32(2): 240-245.

    XU Weiqiang, YUAN Xiugan, XING Yuming, et al. Effects of void distribution on solid-liquid phase change thermal storage[J]. Acta Energiae Solaris Sinica, 2011, 32(2): 240-245. (in Chinese)
    [15]
    CHIEW J, CHIN C S, TOH W D, et al. Low-temperature macro-encapsulated phase change material based thermal energy storage system without air void space design[J]. Applied Thermal Engineering, 2018, 141: 928-938. doi: 10.1016/j.applthermaleng.2018.06.060
    [16]
    JANGHEL D, SAHA S K, KARAGADDE S. Effect of shrinkage void on thermal performance of pure and binary phase change materials based thermal energy storage system: a semi-analytical approach[J]. Applied Thermal Engineering, 2020, 167: 114706. doi: 10.1016/j.applthermaleng.2019.114706
    [17]
    SOLOMON L, ELMOZUGHI A F, OZTEKIN A, et al. Effect of internal void placement on the heat transfer performance-encapsulated phase change material for energy storage[J]. Renewable Energy, 2015, 78: 438-447. doi: 10.1016/j.renene.2015.01.035
    [18]
    LI X Y, NIU C, LI X X, et al. Pore-scale investigation on effects of void cavity distribution on melting of composite phase change materials[J]. Applied Energy, 2020, 275: 115302. doi: 10.1016/j.apenergy.2020.115302
    [19]
    CHEN L, KANG Q J, MU Y T, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. doi: 10.1016/j.ijheatmasstransfer.2014.04.032
    [20]
    SO R M C, LEUNG R C K, KAM E W S, et al. Progress in the development of a new lattice Boltzmann method[J]. Computers & Fluids, 2019, 190: 440-469.
    [21]
    REN Q L, CHAN C. GPU accelerated numerical study of PCM melting process in an enclosure with internal fins using lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016, 100: 522-535. doi: 10.1016/j.ijheatmasstransfer.2016.04.059
    [22]
    HUANG R Z, WU H Y, CHENG P. A new lattice Boltzmann model for solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2013, 59: 295-301. doi: 10.1016/j.ijheatmasstransfer.2012.12.027
    [23]
    LI D, TONG Z X, REN Q L, et al. Three-dimensional lattice Boltzmann models for solid-liquid phase change[J]. International Journal of Heat & Mass Transfer, 2017, 115(Part B): 1334-1347.
    [24]
    YOSHIDA H, KOBAYASHI T, HAYASHI H, et al. Boundary condition at a two-phase interface in the lattice boltzmann method for the convection-diffusion equation[J]. Physical Review E, 90(1): 013303.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (116) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return