Volume 44 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
XIAO Yexin, JIN Tai. Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1042-1053. doi: 10.21656/1000-0887.440103
Citation: XIAO Yexin, JIN Tai. Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1042-1053. doi: 10.21656/1000-0887.440103

Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion

doi: 10.21656/1000-0887.440103
  • Received Date: 2023-04-12
  • Rev Recd Date: 2023-07-21
  • Publish Date: 2023-09-01
  • Aimed at the phenomenon of flame flashback and low-frequency combustion oscillation in the scramjet combustor with equal straight cross sections, 3D simulations were conducted, with the hybrid RANS/LES method (delayed detached-eddy simulation, DDES) for turbulence modeling and the partially stirred reactor (PaSR) for turbulence-reaction interactions. The obtained entire combustion oscillation period is consistent with the low-frequency combustion oscillation phenomenon observed in the experiment. The low-frequency combustion oscillation period can be divided into 3 stages: the cavity-holding flame, the flame flashback, and the flame blowout. By analysis of the reacting flow field in different stages of the low-frequency combustion oscillation cycle, the possible formation mechanism of low-frequency combustion oscillations was summarized. The results show that, there is no choking in the combustion chamber during the whole low-frequency combustion oscillation period. The pressure rise induced by shock interaction and the heat released by combustion are the key factors for the formation of low-frequency combustion oscillations in the combustion chamber.
  • loading
  • [1]
    王强, 徐涛, 姚永涛. 高超声速流动与换热数值仿真研究[J]. 应用数学和力学, 2022, 43(10): 1105-1112. doi: 10.21656/1000-0887.420346

    WANG Qiang, XU Tao, YAO Yongtao. Numerical study on hypersonic flow and aerodynamic heating[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1105-1112. (in Chinese) doi: 10.21656/1000-0887.420346
    [2]
    CHOUBEY G, DEUARAJAN Y, HUANG W, et al. Recent advances in cavity-based scramjet engine: a brief review[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13895-13909. doi: 10.1016/j.ijhydene.2019.04.003
    [3]
    CHOUBEY G, YUVARAJAN D, HUANG W, et al. Hydrogen fuel in scramjet engines: a brief review[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16799-16815. doi: 10.1016/j.ijhydene.2020.04.086
    [4]
    SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. doi: 10.1016/j.paerosci.2016.04.001
    [5]
    DING Y, YUE X, CHEN G, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. doi: 10.1016/j.cja.2021.10.037
    [6]
    LIU Q, BACCARELLA D, LEE T. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. doi: 10.1016/j.paerosci.2020.100636
    [7]
    BEN-YAKAR A, HANSON R K. Cavity flame-holders for ignition and flame stabilization in scramjets: an overview[J]. Journal of Propulsion and Power, 2001, 17(4): 869-877. doi: 10.2514/2.5818
    [8]
    WANG Z, WANG H, SUN M. Review of cavity-stabilized combustion for scramjet applications[J]. Proceedings of the Institution of Mechanical Engineers (Part G): Journal of Aerospace Engineering, 2014, 228(14): 2718-2735. doi: 10.1177/0954410014521172
    [9]
    OUYANG H, LIU W, SUN M. The large-amplitude combustion oscillation in a single-side expansion scramjet combustor[J]. Acta Astronautica, 2015, 117: 90-98. doi: 10.1016/j.actaastro.2015.07.016
    [10]
    SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences, 2019, 106: 43-70. doi: 10.1016/j.paerosci.2019.02.001
    [11]
    WANG H, WANG Z, SUN M. Experimental study of oscillations in a scramjet combustor with cavity flameholders[J]. Experimental Thermal and Fluid Science, 2013, 45: 259-263. doi: 10.1016/j.expthermflusci.2012.10.013
    [12]
    ZHAO G Y, SUN M B, WU J S, et al. Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder[J]. Aerospace Science and Technology, 2019, 87: 190-206. doi: 10.1016/j.ast.2019.02.018
    [13]
    JEONG S M, LEE J H, CHOI J Y. Numerical investigation of low-frequency instability and frequency shifting in a scramjet combustor[J]. Proceedings of the Combustion Institute, 2022, 39(3): 3107-3116.
    [14]
    NAKAYA S, YAMANA H, TSUE M. Experimental investigation of ethylene/air combustion instability in a model scramjet combustor using image-based methods[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3869-3680. doi: 10.1016/j.proci.2020.07.129
    [15]
    LAURENCE S, KARL S, SCHRAMM J M, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Journal of Fluid Mechanics, 2013, 722: 85-120. doi: 10.1017/jfm.2013.56
    [16]
    MA F, LI J, YANG V, et al. Thermoacoustic flow instability in a scramjet combustor[C]//Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2012.
    [17]
    IM S K, DO H. Unstart phenomena induced by flow choking in scramjet inlet-isolators[J]. Progress in Aerospace Sciences, 2018, 97: 1-21. doi: 10.1016/j.paerosci.2017.12.001
    [18]
    DU G M, YE T, LE J L, et al. Experimental investigation of effects of air throttling on combustion characteristics in a kerosene-fueled scramjet at Ma7[J]. Acta Astronautica, 2023, 203: 447-453. doi: 10.1016/j.actaastro.2022.12.025
    [19]
    李文栋, 张文普. 预混燃烧边界层回火的数理模型及研究进展[J]. 应用数学和力学, 2023, 44(1): 36-51. doi: 10.21656/1000-0887.430012

    LI Wendong, ZHANG Wenpu. The mathematical model and research progress of the boundary layer flashback in premixed combustion[J]. Applied Mathematics and Mechanics, 2023, 44(1): 36-51. (in Chinese) doi: 10.21656/1000-0887.430012
    [20]
    ZHAO G Y, SUN M B, SONG X L, et al. Experimental investigations of cavity parameters leading to combustion oscillation in a supersonic crossflow[J]. Acta Astronautica, 2019, 155: 255-263. doi: 10.1016/j.actaastro.2018.12.011
    [21]
    FROST M A, GANGURDE D Y, PAULL A, et al. Boundary-layer separation due to combustion-induced pressure rise in a supersonic flow[J]. AIAA Journal, 2009, 47(4): 1050-1053. doi: 10.2514/1.40868
    [22]
    SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. 1992.
    [23]
    SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20: 181-195. doi: 10.1007/s00162-006-0015-0
    [24]
    SPALART P. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Advances in DNS/LES: Proceedings of the First AFOSR International Conference on DNS/LES. Ruston, Louisiana, USA, 1997.
    [25]
    GOLOVITCHEV V I, NORDIN N, JARNICKI R, et al. 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model[J]. Journal of Fuels and Lubricants, 2000, 109: 1391-1405.
    [26]
    KORNEV N, SHCHUKIN E, TARANOV E, et al. Development and implementation of inflow generator for LES and DNS applications in OpenFOAM[C]//Proceedings of the Open Source CFD International Conference. 2009.
    [27]
    SINGH D, JACHIMOWSKI C J. Quasiglobal reaction model for ethylene combustion[J]. AIAA Journal, 1994, 32(1): 213-216. doi: 10.2514/3.11972
    [28]
    赵国焱. 超声速气流中火焰闪回诱发与火焰传播机制研究[D]. 博士学位论文. 长沙: 国防科技大学, 2019.

    ZHAO Guoyan. On the excitation of flame flashback and flame propagation mechanism in supersonic flow[D]. PhD Thesis. Changsha: National University of Defense Technology, 2019. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (288) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return