Volume 44 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
LIU Siyi, WANG Liya, XIA Jun, WANG Ruijie, TANG Chun, WANG Chengyuan. Molecular Dynamics Simulation of Monolayer Fullerene Membranes for Desalination[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1491-1498. doi: 10.21656/1000-0887.440118
Citation: LIU Siyi, WANG Liya, XIA Jun, WANG Ruijie, TANG Chun, WANG Chengyuan. Molecular Dynamics Simulation of Monolayer Fullerene Membranes for Desalination[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1491-1498. doi: 10.21656/1000-0887.440118

Molecular Dynamics Simulation of Monolayer Fullerene Membranes for Desalination

doi: 10.21656/1000-0887.440118
  • Received Date: 2023-04-19
  • Rev Recd Date: 2023-10-29
  • Publish Date: 2023-12-01
  • Seawater desalination is one of the most promising solutions to fresh water shortage all over the world. The rapid development of nanotechnology led to the boom of nanoporous membranes for water purification. Recent theoretical and experimental studies reported ultra-high water permeability and salt rejection in nanoporous monolayer graphene. However, the difficulty of precisely creating nanometer-scale pores and controlling their distribution greatly limits its industrial application. Through molecular dynamics (MD) simulation, the monolayer quasi-tetragonal phase fullerene (qTPC60) was found to have tremendous potential as ultra-permeable membranes for desalination due to their unform pore distribution. The monolayer fullerene membranes exhibit high water permeability compared to conventional polymer filtration membranes. The work offers insights into the molecular mechanism of sieving, and the MD simulations show that Na+ and Cl- ions have large energy barriers. This 2D monolayer carbon material with unique structure exhibits great potential in seawater desalination.
  • loading
  • [1]
    ANDREEVA D V, TRUSHIN M, NIKITINA A. Two-dimensional adaptive membranes with programmable water and ionicchannels[J]. Nature Nanotechnology, 2021, 16(2): 174-180. doi: 10.1038/s41565-020-00795-y
    [2]
    WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5): 16018. doi: 10.1038/natrevmats.2016.18
    [3]
    ELIMELECH M, PHILLIP W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6034): 712-717.
    [4]
    GEISE G M, PARK H B, SAGLE A C. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. Journal of Membrane Science, 2011, 369(1/2): 130-138.
    [5]
    CORRY B. Water and ion transport through functionalised carbon nanotubes: implications for desalination technology[J]. Energy Environment Science, 2011, 4(3): 751-759. doi: 10.1039/c0ee00481b
    [6]
    SURWADE S P, SMIRNOV S N, VLASSIOUK I V. Graphynes for water desalination and gas separation[J]. Nature Nanotechnology, 2015, 10(5): 459-464. doi: 10.1038/nnano.2015.37
    [7]
    QIU H, XUE M M, SHEN C. Graphynes for water desalination and gas separation[J]. Advanced Materials, 2019, 31(42): e1803772. doi: 10.1002/adma.201803772
    [8]
    YANG Y B, YANG X D, LIANG L. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration[J]. Science, 2019, 364(6445): 1057. doi: 10.1126/science.aau5321
    [9]
    O'HERN S C, BOUTILIER M S H, IDROBO J C. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes[J]. Nano Letter, 2014, 14(3): 1234-1241. doi: 10.1021/nl404118f
    [10]
    COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letter, 2012, 12(7): 3602-3608. doi: 10.1021/nl3012853
    [11]
    KONATHAM D, YU J, HO T A, et al. Simulation insights for graphene-based water desalination membranes[J]. Langmuir, 2013, 29(38): 11884-11897. doi: 10.1021/la4018695
    [12]
    SINT K, WANG B Y, KRAL P. Selective ion passage through functionalized graphene nanopores[J]. Journal of the American Chemical Society, 2008, 130(49): 16448-16449. doi: 10.1021/ja804409f
    [13]
    FENG J D, GRAF M, LIU K. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536(7615): 197-200. doi: 10.1038/nature18593
    [14]
    CAO Z L, LIU V, FARIMANI A B. Water desalination with two-dimensional metal-organic framework membranes[J]. Nano Letter, 2019, 19(12): 8638-8643. doi: 10.1021/acs.nanolett.9b03225
    [15]
    HOU L, CUI X, GUAN B, et al. Synthesis of a monolayer fullerene network[J]. Nature, 2022, 606(7914): 507-510. doi: 10.1038/s41586-022-04771-5
    [16]
    PENG B. Monolayer fullerene networks as photocatalysts for overall water splitting[J]. Journal of the American Chemical Society, 2022, 144(43): 19921-19931. doi: 10.1021/jacs.2c08054
    [17]
    PENG B. Stability and strength of monolayer polymeric C60[J]. Nano Letter, 2023, 23(2): 652-658. doi: 10.1021/acs.nanolett.2c04497
    [18]
    YU L F, XU J Y, PENG B, et al. Anisotropic optical, mechanical, and thermoelectric properties of two-dimensional fullerene networks[J]. Journal of Physical Chemistry Letters, 2022, 13(50): 11622-11629. doi: 10.1021/acs.jpclett.2c02702
    [19]
    YING P H, DONG H K, LIANG T, et al. Atomistic insights into the mechanical anisotropy and fragility of monolayer fullerene networks using quantum mechanical calculations and machine-learning molecular dynamics simulations[J]. Extreme Mechanics Letters, 2023, 58: 101929. doi: 10.1016/j.eml.2022.101929
    [20]
    KAYAL A, CHANDRA A. Exploring the structure and dynamics of nano-confined water molecules using molecular dynamics simulations[J]. Molecular Simulation, 2015, 41(5/6): 463-470.
    [21]
    SHAO Q, ZHOU J, LU L, et al. Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes[J]. Nano Letter, 2009, 9(3): 989-994. doi: 10.1021/nl803044k
    [22]
    ZHANG X, WEI M, XU F, et al. Pressure-dependent ion rejection in nanopores[J]. Journal of Physical Chemistry C, 2020, 124(37): 20498-20505. doi: 10.1021/acs.jpcc.0c03641
    [23]
    ZHU F Q, TAJKHORSHID E, SCHULTEN K. Pressure-induced water transport in membrane channels studied by molecular dynamics[J]. Biophysical Journal, 2002, 83(1): 154-160. doi: 10.1016/S0006-3495(02)75157-6
    [24]
    齐进, 吴锤结. 可压缩Navier-Stokes方程的时空耦合优化低维动力系统建模方法[J]. 应用数学和力学, 2022, 43(10): 1053-1085. doi: 10.21656/1000-0887.430220

    QI Jin, WU Chuijie. Construction of spatiotemporal-coupling optimal low-dimensional dynamical systems for compressible Navier-Stokes equations[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1053-1085. (in Chinese) doi: 10.21656/1000-0887.430220
    [25]
    LI L X, DONG J H, NENOFF T M. Desalination by reverse osmosis using MFI zeolite membranes[J]. Journal of Membrane Science, 2004, 243(1/2): 401-404.
    [26]
    COHEN-TANUGI D, GROSSMAN J C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination[J]. Journal of Chemical Physics, 2014, 141(7): 074704. doi: 10.1063/1.4892638
    [27]
    GUILLEN G, HOEK E M. Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes[J]. Chemical Engineering Journal, 2009, 149(1/3): 221.
    [28]
    HEIRANIAN M, FARIMANI A B, ALURU N R. Water desalination with a single-layer MoS2 nanopore[J]. Nature Communications, 2015, 6: 8616. doi: 10.1038/ncomms9616
    [29]
    HUMMER G, RASAIAH J C, NOWORYTA J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. doi: 10.1038/35102535
    [30]
    曹玉玲, 何强胜, 刘闯. 考虑页岩塑性变形的水力裂缝与天然裂缝相交模拟研究[J]. 应用数学和力学, 2023, 44(6): 679-693. doi: 10.21656/1000-0887.430300

    CAO Yuling, HE Qiangsheng, LIU Chuang. Numerical simulation of hydraulic fractures intersecting natural fractures in shale with plastic deformation[J]. Applied Mathematics and Mechanics, 2023, 44(6): 679-693. (in Chinese) doi: 10.21656/1000-0887.430300
    [31]
    HE Z J, ZHOU J, LU X, et al. Ice-like water structure in carbon nanotube(8, 8) induces cationic hydration enhancement[J]. Journal of Physical Chemistry C, 2013, 117(21): 11412-11420. doi: 10.1021/jp4025206
    [32]
    SUK M E, ALURU N R. Water transport through ultrathin graphene[J]. Journal of Physical Chemistry Letters, 2010, 1(10): 1590-1594. doi: 10.1021/jz100240r
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (154) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return