Volume 44 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
WU Ziheng, ZHANG Chi, ZHANG Shihong, WANG Bosen. Low-Order Predictions of Spatial Distributions of Conserved Scalars in Swirl Combustors Based on the Gaussian Plume Function[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1070-1086. doi: 10.21656/1000-0887.440119
Citation: WU Ziheng, ZHANG Chi, ZHANG Shihong, WANG Bosen. Low-Order Predictions of Spatial Distributions of Conserved Scalars in Swirl Combustors Based on the Gaussian Plume Function[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1070-1086. doi: 10.21656/1000-0887.440119

Low-Order Predictions of Spatial Distributions of Conserved Scalars in Swirl Combustors Based on the Gaussian Plume Function

doi: 10.21656/1000-0887.440119
  • Received Date: 2023-04-19
  • Rev Recd Date: 2023-09-13
  • Publish Date: 2023-09-01
  • The mixture fraction is a conserved scalar characterizing the fuel-air mixing. As a key reference scalar for turbulent combustion modelling, its spatial distribution is usually obtained through 3D numerical simulation, which are, however, time-consuming and costly for combustors with complex geometries. To overcome such low efficiency in the iterative designing process, a low-order model was developed based on the Gaussian plume function to compute the mixture fraction field in the swirl combustor to accelerate the evaluation of the fuel-air mixing strategy and the parameterized design process. Compared with the conventional formulation, the derived new Gaussian plume function includes the effects of convection and corrections due to swirl flows. A mirror image reflection model was further developed to simulate the wall-plume interactions, together with the relevant corrections to ensure mass conservation. This newly derived Gaussian plume model was applied to the low-older prediction of the mixture fraction field in a methane swirl combustor. Based on the database generated through 3D numerical simulations, the model parameters were optimized with the least square method first. The prediction accuracy under broad working conditions was demonstrated. This study not only provides a novel approach for quick predictions of mixture fractions in swirl combustors, but also sets an instance for further development and application of the Gaussian plume model.
  • loading
  • [1]
    钟世林. 掺混射流对燃烧室出口温度分布影响研究[D]. 硕士学位论文. 成都: 电子科技大学, 2011.

    ZHONG Shilin. Research on the influence of mixing jet on the outlet temperature distribution of combustion chamber[D]. Master Thesis. Chengdu: University of Electronic Science and Technology of China, 2011. (in Chinese)
    [2]
    辛升. 湍流扩散燃烧中守恒标量的数值模拟[D]. 硕士学位论文. 武汉: 华中科技大学, 2004.

    XIN Sheng. Numerical simulation of passive scalar in turbulence diffusion combustion[D]. Master Thesis. Wuhan: Huazhong University of Science and Technology, 2004. (in Chinese)
    [3]
    BILGER R W, POPE S B, BRAY K N C, et al. Paradigms in turbulent combustion research[J]. Proceedings of the Combustion Institute, 2005, 30(1): 21-42. doi: 10.1016/j.proci.2004.08.273
    [4]
    BUCKMASTER J, CLAVIN P, LINAN A, et al. Combustion theory and modeling[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1-19. doi: 10.1016/j.proci.2004.08.280
    [5]
    张会强, 陈兴隆. 湍流燃烧数值模拟研究的综述[J]. 力学进展, 1999, 29(4): 567-575. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199904012.htm

    ZHANG Huiqiang, CHEN Xinglong. A review on numerical modeling of turbulent combustion[J]. Advances in Mechanics, 1999, 29(4): 567-575. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199904012.htm
    [6]
    BENNEWITZ J W, SCHUMAKER S A, LIETZ C F, et al. Scaling of oxygen-methane reacting coaxial jets using X-ray fluorescence to measure mixture fraction[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6365-6374. doi: 10.1016/j.proci.2020.05.022
    [7]
    SUTTON J A, DRISCOLL J F. Measurements and statistics of mixture fraction and scalar dissipation rates in turbulent non-premixed jet flames[J]. Combustion and Flame, 2013, 160(9): 1767-1778. doi: 10.1016/j.combustflame.2013.03.006
    [8]
    MASRI A R, KALT P A, BARLOW R S. The compositional structure of swirl-stabilised turbulent nonpremixed flames[J]. Combustion and Flame, 2004, 137(1/2): 1-37.
    [9]
    李继保, 金如山. 燃烧室出口径向温度分布试验及分析研究[J]. 北京航空航天大学学报, 1989(1): 51-61. doi: 10.13700/j.bh.1001-5965.1989.01.007

    LI Jibao, JIN Rushan. Experiment and analysis of radial temperature distribution at combustor exit[J]. Journal of Beijing University of Aeronautics and Astronautics, 1989(1): 51-61. (in Chinese) doi: 10.13700/j.bh.1001-5965.1989.01.007
    [10]
    KIM I, KIM J, CHOE Y, et al. Effect of vane angle on combustion characteristics of premixed H2/air in swirl micro-combustors with straight vane or twisted vane[J]. Applied Thermal Engineering, 2023, 228: 120528. doi: 10.1016/j.applthermaleng.2023.120528
    [11]
    LV G, LIU X, ZHANG Z, et al. The effects of premixed pilot-stage on combustion instabilities in stratified swirling flames: a large eddy simulation study[J]. Energy, 2023, 274: 127246. doi: 10.1016/j.energy.2023.127246
    [12]
    STEINHAUSEN M, ZIRWES T, FERRARO F, et al. Flame-vortex interaction during turbulent side-wall quenching and its implications for flamelet manifolds[J]. Proceedings of the Combustion Institute, 2022, 39(2): 2149-2158.
    [13]
    GREEN A E S, SINGHAL R P, VENKATESWAR R. Analytic extensions of the Gaussian plume model[J]. Journal of the Air Pollution Control Association, 1980, 30(7): 773-776. doi: 10.1080/00022470.1980.10465108
    [14]
    SÁNCHEZ-SOSA J E, CASTILLO-MIXCÓATL J, BELTRÁN-PÉREZ G, et al. An application of the Gaussian plume model to localization of an indoor gas source with a mobile robot[J]. Sensors, 2018, 18(12): 4375. doi: 10.3390/s18124375
    [15]
    李万莉. 基于高斯模型的复杂地形下天然气泄漏扩散特性研究[D]. 硕士学位论文. 青岛: 中国石油大学(华东), 2018.

    LI Wanli. Research on natural gas leakage and diffusion characteristics under complex topography based on Gaussian plume diffusion model[D]. Master Thesis. Qingdao: China University of Petroleum(EastChina), 2018. (in Chinese)
    [16]
    CUSSLER E L. Diffusion: Mass Transfer in Fluid Systems[M]. Cambridge University Press, 2009.
    [17]
    曹瑞华. 傅里叶变换及其应用[J]. 理论数学, 2014, 4(4): 138-143. https://cdmd.cnki.com.cn/Article/CDMD-10446-1021087916.htm

    CAO Ruihua. The Fourier transform and its application[J]. Pure Mathematics, 2014, 4(4): 138-143. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10446-1021087916.htm
    [18]
    李舒琦. 基于主动嗅觉方法的火星甲烷羽流源点定位研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2021.

    LI Shuqi. Research on location of martian methane plume source based on active olfactory method[D]. Master Thesis. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [19]
    谷超豪. 数学物理方[M]. 北京: 高等教育出版社, 2002.

    GU Chaohao. Mathematical Physics Equation[M]. Beijing: Higher Education Press, 2002. (in Chinese)
    [20]
    杨毅明. 数字信号处理[M]. 北京: 机械工业出版社, 2012.

    YANG Yiming. Digital Signal Processing[M]. Beijing: China Machine Press, 2012. (in Chinese)
    [21]
    DE NEVERS N. Air Pollution Control Engineering[M]. Waveland Press, 2010.
    [22]
    赵宁波, 梁恩广, 石云姣, 等. 进气畸变对回流燃烧室性能的影响研究[J]. 热能动力工程, 2022, 37(12): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202212013.htm

    ZHAO Ningbo, LIANG Enguang, SHI Yunjiao, et al. Effects of inlet flow rate distortion on counterflow combustor performance[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(12): 104-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202212013.htm
    [23]
    SEE Y C, IHME M. Large eddy simulation of a partially-premixed gas turbine model combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1225-1234.
    [24]
    王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43(1): 77-83. doi: 10.21656/1000-0887.420137

    WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43(1): 77-83. (in Chinese) doi: 10.21656/1000-0887.420137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(6)

    Article Metrics

    Article views (388) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return